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Introduction 

We can describe the world we live in as a continuous or analog world. This nature 
implies that the information we perceive (image, sound, symbols, etc.) cannot be 
directly represented and stored in digital format without a previous digitization step. 
The purpose of this chapter is to introduce the concept of analog and digital 
information and to see how this conversion can be carried out to process and 
manipulate information in our real world. 
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1.1. The digital world vs. the analog world 
 
 
 

Cyber-physical systems, as we understand them today, include tools that store and 
process data of a single nature: digital. It is essential to convert the continuous 
information of the real world into a digital format to be able to deal with it conveniently 
by computers, cameras, sensors, and so on. Logically, we can also transform digitally 
stored information into analog to be able to perceive it again in our environment (see 
Figure 1.1.1). 

 

 
 

Figure 1.1.1. The analog-to-digital conversion process, or vice versa, requires specific equipment. 

 

We find this transformation process every day when using a computer. Speech 
recognition programs, for example, transform sound waves into digital information to 
be able to recognize certain patterns (the phonemes) and later turn them into words and 
sentences. Similarly, reading programs convert digital information (text stored on our 
computer) into sound waves that we can perceive and understand. 

 

The discretization-digitization process of an analog signal goes through three distinct 
steps: 

 

• Sampling: retrieving instantaneous values of the signal at regular intervals; 
• Quantization: assigning a discrete value to the continuous value retrieved in the 

sampling step; 
• Encoding: transform to the (usually binary) encoding from the previous step. 
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Figure 1.1.2. Analog signal representation. 

Let us start with an example, to better understand how sampling an analog signal works. 
Figure 1.1.2 depicts an analog signal representation, for instance, an analog signal 
representing sound. It shows what a continuous representation looks like. If we want to 
store the signal without any digitization step, we would need infinite values. The 
sampling process is hence responsible for taking values of this continuous signal at 
regular time intervals. Figure 1.1.3a depicts the idea, in which vertical lines represent 
this sampling of the same continuous signal shown in Figure 1.1.2. 

Figure 1.1.3a. Sampling of an analog signal. 

What we achieve with the sampling process is to discretize the signal in time (or in space, 
in case we deal with images). This way, instead or requiring infinite points to store the 
signal, we would only need those points identified within the sampling period, i.e., 
within an interval. The quantization process does the same but on the magnitude axis. 
Notice that if we do not discretize this axis, we would encounter the same problem: we 
would have infinite representation points. To quantize this signal, then, we divide the 
magnitude axis into different intervals and approximate the value we get from the 
sampling to the discretized point closest to the original (see Figure 1.1.3b). 
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Figure 1.1.3b. Quantization of an analog signal. 

The points we see circled in Figure 1.1.3b are the ones we keep. Later, during the 
encoding process, we assign (or map) a value to each point in the signal. In our previous 
example, we could carry out this coding by assigning a consecutive value to each 
quantization interval and sequentially saving these values to be able to treat this signal 
digitally. Figure 1.1.3c shows this mapping, graphically. 

Figure 1.1.3c. Encoding of an analog signal. 

By following the process shown in Figures 1.1.3a—1.1.3c, we can transform analog or 
continuous information of our real world into digital information, which we can process 
in a more efficient manner by digital computers. The definition of the precise sampling 
and quantization intervals would decide the quality of the signal. The smaller the 
interval, the better we can reproduce the original signal but also the larger to storage we 
need to store the information associated to the signal. It is therefore a matter of achieving 
a balance between quality and quantity. The tools and standards used to carry out the 
digitization process give some guidance to manage that balance for us. 
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The Nyquist theorem [1] tells us that to accurately reproduce an analog signal, the 
sampling period must be at least half the size of the smallest oscillation of our input 
signal. Figure 1.1.4 depicts the previous idea, graphically, showing us how to reproduce 
the original signal with the minimum number of samples. 

Figure 1.1.4. The Nyquist theorem. 

Another way to talk about this interval is with what we call the sampling frequency, 
which is the inverse of the period and we measure it in Hz: 

In many standards, we find that instead of talking about the sampling period we are told 
about its frequency, which is why it is important to differentiate these two concepts. 

With the quantization process, we do not have any theory that ensures an exact 
reproduction of the original, but as research has been carried out, new and increasingly 
complex techniques have appeared that allow the original information to be represented 
with high quality and using the least space possible. 

A proper example of the above observation are the JPEG and JPEG2000 
standards (see https://jpeg.org/jpeg2000/), which use optimization and data 
compression methods to drastically reduce the size of digital information. 

The Nyquist theorem

The Nyquist theorem [1], 
also known as the Nyquist–

Shannon sampling theorem [2] 
or simply the sampling theorem, 

can be summarized with the 
following statement: to 

accurately reproduce a signal, 
the sample rate must be twice 

the highest frequency. 

https://jpeg.org/jpeg2000/
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1.2. The concept of digital information 
 
 
 
 
 
 
 

In the previous section, we have seen how to discretize an analog signal. It relies on a 
series of transformations and encoding into digital numbers that we can manipulate, later 
on. Although in our daily life we are used to dealing with base 10 numbers, in the digital 
world we manipulate information in base 2. 

 

Two main reasons lead us to store information in base 2. First, we have the fact that 
storing information in base 2 is much more economical than in base 10. Consider the 
following example: imagine that we need to represent any number between 0 and 999 in 
base 10. To do this, we need 10 times 3 different digits (that is, 30 different digits). In 
base 2, on the other hand, representing 1024 (that is, 210) only costs us 20 digits (see 
Figure 1.2.1). This saving, when it comes to storing a lot of information, can become 
very significant. 

 

 
 

Figure 1.2.1. Binary representation vs. decimal representation. 
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The second reason we represent information in base 2 is due to the nature of electronic 
circuits. It is very easy for us to represent the symbol 0 as the lack of voltage and the 
symbol 1 as the voltage of a circuit. This way, electronic circuits allow us to do all kinds 
of operations with just these two states. Mathematically, it can be proved that the most 
efficient form of representation is base 3, but for practical reasons, 2 has been chosen 
since the loss of efficiency is minimal and its implementation in electronic circuits is 
much easier, technically speaking. 

 
Figure 1.2.2 depicts how the binary system works, as well as its equivalence to the 
decimal system we use in our daily life. It shows that the binary representation is more 
efficient than the decimal representation. Naturally, all the operations we can do with 
one system, we can also do with the other. In other words, the two are completely 
equivalent. When we work with a computer, al l the internal operations are conducted in 
base 2, although the results can be represented to us in base 10, to ease our 
understanding. 

 

 
 

Figure 1.2.2. The binary system. 
 
To express large bit units, we need to agree on several different measurements. As we 
can see in Tables 1.2.3, we take what we call a byte as the base unit. The byte is the 
grouping of 8 bits and, as we have already seen, a bit can only represent a symbol 0 or a 
symbol l. Hence, with 8 of these units we can represent 28 (i.e., 256) different values. 
The byte has been taken as the basis of representation for historical reasons, and by 
making multiples of 210 (i.e., 1024) we get the other units we so frequently use when 
referring to the storage capacity of our disk drive, memory, etc. 

 

Table 1.2.3. Storage units. 
 

 
 

 

Unit Abbr. Quantity

bit

byte

kilobyte

megabyte

gigabyte

terabyte

petabyte

KB

MB

GB

TB

PB

0/1

8 bits

210 = 1024 bytes

220 = 1024 kilobytes

230 = 1024 megabytes

240 = 1024 gigabytes

250 = 1024 terabytes

Ternary computers 

Ternary computers 
use three-state number 

systems, which are considered 
the most economical and 

efficient representation of all 
possible integer bases. 

 
Balanced ternary  

notation which consists of trits 
(or ternary digits) can be 

represented with -1, zero, and 
one (while ordinary ternary 
notation can be represented 

with zero, one, and two) [3]. 
 

Ternary computing 
uses trinary logic. The Setun 

ternary computer, built in 1958 
at the Moscow State 

University, was considered 
superior to other binary state 

computers of the same era. 
However, and due to the 

successful deployment of 
digital electronics, ternary 

designs diminished in 
significance. Some authors  

argue that they can potentially 
experience growth again in the  

future, due to the symmetric 
properties and elegance of 

balanced ternary notation [3]. 
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To perform binary operations, we use what is called Boolean algebra, which is nothing 
more than a series of basic operations from which we can do all the others. The most 
basic logical operations are AND, OR and NOT. Tables 1.2.4a–1.2.4c show their 
rationale. From now on, we represent the truth with the symbol l and the false value with 
the symbol 0. This is how operations are conducted in all digital circuits. 

Table 1.2.4a. AND logic gate. 

Table 1.2.4b. OR logic gate. 

Table 1.2.4c. NOT logic gate. 

Digitally speaking, logical gates are implemented using electronic relays that open and 
close whenever a given amount of electricity shall pass by. Those relays are transistors 
[4]. Transistors are the physical basis on which all digital circuits are designed. Figure 
1.2.5 shows how the three main logic gates (AND, OR and NOT) are implemented. 

Figure 1.2.5. The three main logic gates (AND, OR, NOT), represented by transistors. 
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Table 1.2.6. Addition of binary numbers 

 
 

 

With these gates, we could conduct any operation. Let us see this with an example. 
Assume we want to compute the addition of two binary numbers (assuming one digit, 
each). The first thing we have to do is to build a table containing all the possible results 
(see Table 1.2.6). We can now design a digital circuit for each output of our previous 
operation (see Figure 1.2.7). Notice that the addition of two numbers, assuming one bit 
per number, leads to a two-bit output. Hence, we shall prepare two different circuits, one 
for each possible output. Likewise, if we had more inputs and more outputs, we would 
need to prepare a digital circuit for each combination. There exist techniques that allow 
us to minimize as much as possible the number of gates needed to implement those 
multiple combinations, to reduce the cost (in terms of transistors) as much as possible. 
These techniques are based on the concept of Karnaugh maps [5]. 

 

 
 
Figure 1.2.7. Adder, or summer, digital circuit. 
 

Another problem we may face when dealing with digital circuits  is knowing when we 
have the correct data to operate as we want. Figure 1.2.8 shows how the path from the 
different units that provide the information to the digital circuit (which is in charge of 
performing the operations) has a different length. These differences mean that, even if 
the data leaves units 1, 2 and 3 at the same time, it arrives at the digital circuit at different 
times. We might think that the solution is to make the paths that transport the data 
between the units and the circuit have different speeds, but this may not be feasible 
(technologically speaking). To solve this problem, the concept of the clock is introduced. 
The clock is a small circuit that gives us a signal (a voltage rise) every certain time 
interval, so that the digital circuit, upon receiving this signal, knows that its inputs have 

Digital circuits 

We refer to digital 
circuits as all those circuits that 
use a digital signal to carry out 

their operations [4] 
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the correct information and, therefore, that the can process There are several ways to 
make the clock's circuitry, one of which is to use a quartz crystal, which provides very 
precise and constant oscillations that make it ideal for this kind of situation. 

 

 

 
 

 
Figure 1.2.8. The digital circuit needs to know when it has the correct data to operate. 
 

 

The period or interval of this clock must be equal to or greater (to leave a safety margin) 
than the maximum propagation time of the signal. When the clock gives us a signal, we 
know that data reached the input of the circuit, i.e., we can process such data correctly. 
Digital circuits that use a clock are called synchronous digital circuits, because of the 
synchrony that the clock provides them, although there are also asynchronous digital 
circuits which, by their nature, do not need a clock to synchronize them. 

 

The clock period in our digital circuit is what allows us to set the maximum speed at 
which our device can operate. Logically, the simplest operations that our circuit can 
perform shall last at least one clock period. Hence, the frequency allows us to know the 
maximum number of operations per second that can be performed. For instance, suppose 
we have a microprocessor that works at 3 GHz. Since 3 GHz is exactly three times 109 
Hz, we set the clock period to T = 1/(3.0 · 109 Hz ), i.e., 3.3e-10 (three nanoseconds). 
Hence, if every clock cycle could do one operation, that means that within one second 
we could do more than 1 200 million operations. 
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In practice, most operations performed by current microprocessors are not usually 
following those theoretical estimations. Rather, they may need more than one clock 
cycle to complete the operation. Classical operations such as multiplication and division 
have a fairly high complexity. They cannot be designed with a low number of logic 
gates. They require several execution steps before reaching completion. This is where 
computer architecture theories are required, to find engineering strategies to reduce as 
much as possible the number of clock cycles that complex operations may need to 
complete their execution. For this reason, the computational power is measured in terms 
of accomplished operations, rather than in clock cycles. 

Clock  cycles

Measurements used 
to quantify the power of a CPU 

are, for example, the millions 
of floating-point operations per 

second it can produce (known 
as GFLOPS). 
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