Cyber-Physical
Systems



Authorship: Francesc Auli, Joaquin Garcia-Alfaro, Oriol Pujol

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. The terms of the license can be consulted in http://www.gnu.org/licenses/fdl-1.3.html.



Preliminaries

The digital world vs. the analog world

1.1
1.2.
1.3.
1.4.

The analog-to-digital conversion process
Analog signal representation
Sampling, quantization, and encoding of an analog signal

The Nyquist theorem

The concept of digital information

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

Binary representation vs. decimal representation
The binary system

Storage units

Logic gates (AND, OR, NOT)

Logic gates represented by transistors

Addition of binary numbers

Adder, or summer, digital circuit

Complementing digital circuits with a clock



Introduction

We can describe the world we live in as a continuous or analog world. This nature
implies that the information we perceive (image, sound, symbols, etc.) cannot be
directly represented and stored in digital format without a previous digitization step.
The purpose of this chapter is to introduce the concept of analog and digital
information and to see how this conversion can be carried out to process and

manipulate information in our real world.



1.1. The digital world vs. the analog world

Cyber-physical systems, as we understand them today, include tools that store and
process data of a single nature: digital. It is essential to convert the continuous
information of the real world into a digital format to be able to deal with it conveniently
by computers, cameras, sensors, and so on. Logically, we can also transform digitally
stored information into analog to be able to perceive it again in our environment (see

Figure 1.1.1).

Analog to digital

Analog to digital

Converter

— - =
Digital to analog Digital to analog oooooo

Figure 1.1.1. The analog-to-digital conversion process, or vice versa, requires specific equipment.

We find this transformation process every day when using a computer. Speech
recognition programs, for example, transform sound waves into digital information to
be able to recognize certain patterns (the phonemes) and later turn them into words and
sentences. Similarly, reading programs convert digital information (text stored on our

computer) into sound waves that we can perceive and understand.

The discretization-digitization process of an analog signal goes through three distinct

steps:

e Sampling: retrieving instantaneous values of the signal at regular intervals;
e Quantization: assigning a discrete value to the continuous value retrieved in the
sampling step;

e Encoding: transform to the (usually binary) encoding from the previous step.



Magnitude

Time
Figure 1.1.2. Analog signal representation.

Let us start with an example, to better understand how sampling an analog signal works.
Figure 1.1.2 depicts an analog signal representation, for instance, an analog signal
representing sound. It shows what a continuous representation looks like. If we want to
store the signal without any digitization step, we would need infinite values. The
sampling process is hence responsible for taking values of this continuous signal at
regular time intervals. Figure 1.1.3a depicts the idea, in which vertical lines represent

this sampling of the same continuous signal shown in Figure 1.1.2.

Magnitude A

TN

—

— Time

T (sampling period)

Figure 1.1.3a. Sampling of an analog signal.

What we achieve with the sampling process is to discretize the signal in time (or in space,
in case we deal with images). This way, instead or requiring infinite points to store the
signal, we would only need those points identified within the sampling period, i.e.,
within an interval. The quantization process does the same but on the magnitude axis.
Notice that if we do not discretize this axis, we would encounter the same problem: we
would have infinite representation points. To quantize this signal, then, we divide the
magnitude axis into different intervals and approximate the value we get from the

sampling to the discretized point closest to the original (see Figure 1.1.3b).



Magnitude A

N\,
7N
/ \
7 \
\
— / \
/ S { \ _ 8 0 0 @
7 e \ —
/ \ -
/ \ 4
7 \ V4
/ A z
/ N\~
/
I
> ‘
Time

T (sampling period)

Figure 1.1.3b. Quantization of an analog signal.

The points we see circled in Figure 1.1.3b are the ones we keep. Later, during the
encoding process, we assign (or map) a value to each point in the signal. In our previous
example, we could carry out this coding by assigning a consecutive value to each
quantization interval and sequentially saving these values to be able to treat this signal

digitally. Figure 1.1.3c shows this mapping, graphically.

Magnitude \
1101
1100 —T
1011
1010
1001

1000 —@—
0111 —o—y—9—
0110 —
0101
0100
0011
0010
0001 —
0000

i
Time

Coding: 0011/0110/1000/1000/1000/0111/...

Figure 1.1.3c. Encoding of an analog signal.

By following the process shown in Figures 1.1.3a—1.1.3c, we can transform analog or
continuous information of our real world into digital information, which we can process
in a more efficient manner by digital computers. The definition of the precise sampling
and quantization intervals would decide the quality of the signal. The smaller the
interval, the better we can reproduce the original signal but also the larger to storage we
need to store the information associated to the signal. It is therefore a matter of achieving
a balance between quality and quantity. The tools and standards used to carry out the

digitization process give some guidance to manage that balance for us.



The Nyquist theorem [1] tells us that to accurately reproduce an analog signal, the
sampling period must be at least half the size of the smallest oscillation of our input
signal. Figure 1.1.4 depicts the previous idea, graphically, showing us how to reproduce

the original signal with the minimum number of samples.

Smallest measurable amplitude

>
|

Magnitude A

|
|
|
|
|
|
|
|
|
|
|
|
|
—>

Nyquist rate Time

Figure 1.1.4. The Nyquist theorem.

Another way to talk about this interval is with what we call the sampling frequency,

which is the inverse of the period and we measure it in Hz:

1 _
T — fsampling

In many standards, we find that instead of talking about the sampling period we are told

about its frequency, which is why it is important to differentiate these two concepts.

With the quantization process, we do not have any theory that ensures an exact
reproduction of the original, but as research has been carried out, new and increasingly
complex techniques have appeared that allow the original information to be represented

with high quality and using the least space possible.

A proper example of the above observation are the JPEG and JPEG2000
standards (see https://jpeg.org/jpeg2000/), which use optimization and data

compression methods to drastically reduce the size of digital information.

The Nyquist theorem

|
|
|
|
|
|
|
|
|
|
|
|
|
—~

The Nyquist theorem [1],

also known as the Nyquist—
Shannon sampling theorem [2]
or simply the sampling theorem,
can be summarized with the
following statement: fo
accurately reproduce a signal,
the sample rate must be twice
the highest frequency.



https://jpeg.org/jpeg2000/

1.2. The concept of digital information

In the previous section, we have seen how to discretize an analog signal. It relies on a
series of transformations and encoding into digital numbers that we can manipulate, later
on. Although in our daily life we are used to dealing with base 10 numbers, in the digital

world we manipulate information in base 2.

Two main reasons lead us to store information in base 2. First, we have the fact that
storing information in base 2 is much more economical than in base 10. Consider the
following example: imagine that we need to represent any number between 0 and 999 in
base 10. To do this, we need 10 times 3 different digits (that is, 30 different digits). In
base 2, on the other hand, representing 1024 (that is, 210) only costs us 20 digits (see
Figure 1.2.1). This saving, when it comes to storing a lot of information, can become

very significant.

ollo
SIREIAE
2 [2][2
SERE
4] |4
s lslls
6 [slle
77l
8 [sl[s ol o] [o] o] o] o]
o s
Ao

Figure 1.2.1. Binary representation vs. decimal representation.



The second reason we represent information in base 2 is due to the nature of electronic
circuits. It is very easy for us to represent the symbol 0 as the lack of voltage and the
symbol 1 as the voltage of a circuit. This way, electronic circuits allow us to do all kinds
of operations with just these two states. Mathematically, it can be proved that the most
efficient form of representation is base 3, but for practical reasons, 2 has been chosen
since the loss of efficiency is minimal and its implementation in electronic circuits is

much easier, technically speaking.

Figure 1.2.2 depicts how the binary system works, as well as its equivalence to the
decimal system we use in our daily life. It shows that the binary representation is more
efficient than the decimal representation. Naturally, all the operations we can do with
one system, we can also do with the other. In other words, the two are completely
equivalent. When we work with a computer, al | the internal operations are conducted in
base 2, although the results can be represented to us in base 10, to ease our

understanding.

o'’ o' o
l l l l l 10010,= 16+2 = 18 ,,
1

16 8 4 2

Figure 1.2.2. The binary system.

To express large bit units, we need to agree on several different measurements. As we
can see in Tables 1.2.3, we take what we call a byte as the base unit. The byte is the
grouping of 8 bits and, as we have already seen, a bit can only represent a symbol 0 or a
symbol 1. Hence, with 8 of these units we can represent 28 (i.e., 256) different values.
The byte has been taken as the basis of representation for historical reasons, and by
making multiples of 210 (i.e., 1024) we get the other units we so frequently use when

referring to the storage capacity of our disk drive, memory, etc.

Table 1.2.3. Storage units.

Unit Abbr. | Quantity

bit 0/1
byte 8 bits
kilobyte KB 210 = 1024 bytes
megabyte MB 220 = 1024 kilobytes
gigabyte GB 239 = 1024 megabytes
terabyte TB 210 — 1024 gigabytes
petabyte PB 259 = 1024 terabytes

Ternary computers

Ternary computers

use three-state number
systems, which are considered
the most economical and
efficient representation of all
possible integer bases.

Balanced ternary

notation which consists of trits
(or ternary digits) can be
represented with -1, zero, and
one (while ordinary ternary
notation can be represented
with zero, one, and two) [3].

Ternary computing

uses trinary logic. The Setun
ternary computer, built in 1958
at the Moscow State
University, was considered
superior to other binary state
computers of the same era.
However, and due to the
successful deployment of
digital electronics, ternary
designs diminished in
significance. Some authors
argue that they can potentially
experience growth again in the
future, due to the symmetric
properties and elegance of
balanced ternary notation [3].




To perform binary operations, we use what is called Boolean algebra, which is nothing
more than a series of basic operations from which we can do all the others. The most
basic logical operations are AND, OR and NOT. Tables 1.2.4a—1.2.4c show their
rationale. From now on, we represent the truth with the symbol | and the false value with

the symbol 0. This is how operations are conducted in all digital circuits.

Table 1.2.4a. AND logic gate.

Input 1 Input 2 Output
0 0 0
0 1 0
1 0 0
1 1 1

Table 1.2.4b. OR logic gate.

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 1

Table 1.2.4¢c. NOT logic gate.
Input H Output

0 1
1 0

Digitally speaking, logical gates are implemented using electronic relays that open and
close whenever a given amount of electricity shall pass by. Those relays are transistors
[4]. Transistors are the physical basis on which all digital circuits are designed. Figure
1.2.5 shows how the three main logic gates (AND, OR and NOT) are implemented.

AND Gate OR Gate NOT Gate

Input —

Output —
Input 2

Output T

Input 1 —\I Input 1 — )

Output

Input 2

Figure 1.2.5. The three main logic gates (AND, OR, NOT), represented by transistors.



Table 1.2.6. Addition of binary numbers

Bit 1 Bit 2 Output
0 0 00
0 1 01
1 0 10
1 1 11

With these gates, we could conduct any operation. Let us see this with an example.
Assume we want to compute the addition of two binary numbers (assuming one digit,
each). The first thing we have to do is to build a table containing all the possible results
(see Table 1.2.6). We can now design a digital circuit for each output of our previous
operation (see Figure 1.2.7). Notice that the addition of two numbers, assuming one bit
per number, leads to a two-bit output. Hence, we shall prepare two different circuits, one
for each possible output. Likewise, if we had more inputs and more outputs, we would
need to prepare a digital circuit for each combination. There exist techniques that allow
us to minimize as much as possible the number of gates needed to implement those
multiple combinations, to reduce the cost (in terms of transistors) as much as possible.

These techniques are based on the concept of Karnaugh maps [5].

NOT

} OR

D

BIT 2 :

Figure 1.2.7. Adder, or summer, digital circuit.

Another problem we may face when dealing with digital circuits is knowing when we
have the correct data to operate as we want. Figure 1.2.8 shows how the path from the
different units that provide the information to the digital circuit (which is in charge of
performing the operations) has a different length. These differences mean that, even if
the data leaves units 1, 2 and 3 at the same time, it arrives at the digital circuit at different
times. We might think that the solution is to make the paths that transport the data
between the units and the circuit have different speeds, but this may not be feasible
(technologically speaking). To solve this problem, the concept of the clock is introduced.
The clock is a small circuit that gives us a signal (a voltage rise) every certain time

interval, so that the digital circuit, upon receiving this signal, knows that its inputs have

10

Output (least significant bit)

Output (most significant bit)

Digital circuits

We refer to digital

circuits as all those circuits that
use a digital signal to carry out
their operations [4]




the correct information and, therefore, that the can process There are several ways to
make the clock's circuitry, one of which is to use a quartz crystal, which provides very

precise and constant oscillations that make it ideal for this kind of situation.

Digital Circuit

Unit 1
length 1
length 2
length 3
Unit 2
Unit 3
length 1 < length 2 < length 3

Clock

clock signal M

A&

clock interval

Figure 1.2.8. The digital circuit needs to know when it has the correct data to operate.

The period or interval of this clock must be equal to or greater (to leave a safety margin)
than the maximum propagation time of the signal. When the clock gives us a signal, we
know that data reached the input of the circuit, i.e., we can process such data correctly.
Digital circuits that use a clock are called synchronous digital circuits, because of the
synchrony that the clock provides them, although there are also asynchronous digital

circuits which, by their nature, do not need a clock to synchronize them.

The clock period in our digital circuit is what allows us to set the maximum speed at
which our device can operate. Logically, the simplest operations that our circuit can
perform shall last at least one clock period. Hence, the frequency allows us to know the
maximum number of operations per second that can be performed. For instance, suppose
we have a microprocessor that works at 3 GHz. Since 3 GHz is exactly three times 109
Hz, we set the clock period to T = 1/(3.0 - 109 Hz ), i.e., 3.3e-10 (three nanoseconds).
Hence, if every clock cycle could do one operation, that means that within one second

we could do more than 1 200 million operations.

11



In practice, most operations performed by current microprocessors are not usually
following those theoretical estimations. Rather, they may need more than one clock
cycle to complete the operation. Classical operations such as multiplication and division
have a fairly high complexity. They cannot be designed with a low number of logic
gates. They require several execution steps before reaching completion. This is where
computer architecture theories are required, to find engineering strategies to reduce as
much as possible the number of clock cycles that complex operations may need to
complete their execution. For this reason, the computational power is measured in terms

of accomplished operations, rather than in clock cycles.

12

Clock cycles

Measurements used

to quantify the power of a CPU
are, for example, the millions
of floating-point operations per
second it can produce (known
as GFLOPS).




References

[1] Nyquist, H. (1928). Certain topics in telegraph transmission theory.
Transactions of the American Institute of Electrical Engineers (AIEE),
Volume 47, Issue 2, April, Pages 617-644, https://doi.org/10.1109/T-
AIEE.1928.5055024

[2] Shannon, C. E. (1949). Communications in the presence of noise.
Proceedings of the Institute of Radio Engineers (IRE), Volume 37, Issue 1,
January, Pages 10-21, https://doi.org/10.1109/T-AIEE.1928.5055024

[3] Knuth, D. (1997). The art of computer programming. Volume 2.
Seminumerical Algorithms, Chapter 4 (Arithmetic), Section 4.1. Positional
Number Systems, Pages 207-208. Addison-Wesley, third edition,
https://www-cs-faculty.stanford.edu/~knuth/taocp.html

[4] Tocci and Widmer (1998). Digital Systems: Principles and
applications. 7th edition. Prentice Hall. Pearson Education International.

[S] Katz, R. H. (1994). Contemporary Logic Design. The Benjamin /
Cummings Publishing Company. Pages 70-85.

13



	Cover
	Credits
	Preliminaries (Sample Chapter)
	Introduction
	Digital vs. Analog
	Concept of digital information
	References




