
Intrusion
detection systems

Joaquin Garcia-Alfaro

Recommended minimum reading time: 4 hours

GNUFDL • Intrusion detection systems

© Fundació Universitat Oberta de Catalunya (FUOC) Av. Tibidabo,
39-43, 08035 Barcelona
Authorship: Joaquin Garcia-Alfaro
Production: FUOC

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. The terms of the license can be consulted in http://www.gnu.org/licenses/fdl-1.3.html.

Intrusion detection systems

Contents

Introduction... 5

Objectives... 6

1. Cyber defence and tools for intrusion detection...................... 7

1.1. Background and current systems .. 8

1.1.1. Early solutions ... 10

1.1.2. Current intrusion detection systems 11

1.2. General architecture of a detection system 12

1.2.1. Event collectors .. 15

1.2.2. Event processors .. 17

1.2.3. Response units and remediation plans 21

2. Management of events, alerts and incidents.............................. 23

2.1. Configuration of event collectors ... 24

2.2. Information and collection policies ... 25

2.3. Normalisation of the collected information 26

2.4. Aggregation and fusion of information 27

2.5. Correlation of alerts and generation of reports 28

3. Detecting network intruders with Snort.................................... 32

3.1. Origin and architecture of Snort .. 33

3.1.1. Snort’s basic architecture ... 34

3.2. Packet sniffer and preprocessor .. 36

3.3. Rules and detection engine .. 38

3.4. Notification system ... 40

4. Deception systems and techniques.. 42

Summary.. 45

Glossary.. 47

Bibliography... 49

GNUFDL •

5 Intrusion detection systems

Introduction

The main consequence of the use of any digital technology is the exploitation

of its weaknesses and, therefore, the execution of cyber attacks. Computer

networks are no exception. Any network connected to the Internet is exposed

to possible attacks. This is why it is very important to impose new security

requirements beyond protection mechanisms (such as cryptography and fire-

wall systems). Although deficiencies in these systems can be checked using

conventional tools, they are not always corrected. In general, these weakness-

es can put at risk network security and facilitate illegal entries into the system.

The area of cyber defence is precisely trying to solve this new problem with

the use of mechanisms for monitoring and detecting attacks. Most current or-

ganisations have data protection mechanisms integrated into their networks.

But, although these mechanisms must be considered essential, the security

assumed by the organisation must carry on increasing.

Thus, a purely perimeter level of protection (based only on the integration of

firewall systems and encryption systems into the network) is not enough. We

must think that not all access to the network goes through the firewall or that

all threats originate in the external area of the firewall. In addition, firewall

systems, like other elements of the network, can also be attacked.

It is essential to install detection mechanisms, capable of alerting the network

administrator at the time that these attacks take place, not only for the de-

tection part, but also to remediate the attacks. An analogy that helps to un-

derstand the need to incorporate these elements could be the comparison be-

tween the security of a computer network and the security of a building: the

entrance doors carry out a first level of access control, but we usually do not

leave it at that; we will install motion detectors or surveillance cameras at key

points in the building to detect the existence of unauthorised people, or peo-

ple who may misuse resources and endanger security. In addition, there will be

security guards, registration books in which it will be necessary to write down

all the staff who access a certain department that we consider critical. All this

information is processed from a security control office where the recording

of the cameras is supervised and the registration books are kept. All these ele-

ments, projected into the digital world, shape what is known in the field of

cybersecurity as cyber defence elements.

GNUFDL •

6 Intrusion detection systems

Objectives

The objectives you must achieve once you have worked through the materials

of this module are the following:

1. To understand the origins of the concept of intrusion detection and see some

of the classic techniques that can be used.

2. To learn to classify these systems according to various criteria, such as the

place where the data analysis process is carried out or the specific detection

mechanism.

3. To understand the limitations linked to the traditional processes of an

intrusion detection system, including the problem of false positives and

false negatives.

4. To know about the existence of additional management tools capable of

normalising, merging and matching events and alerts collected in a dis-

tributed manner. These tools can consolidate the treatment of incidents

detected through different event monitoring architectures.

5. To see a specific example of an intrusion detection system at the network

level, using the Snort free open source tool.

6. To see complementary technologies to classical detection systems, with

the specific example of deception systems and technologies.

GNUFDL •

7 Intrusion detection systems

1. Cyber defence and tools for intrusion detection

Cyber defence assumes that an attacker is able to violate the security policy

associated with an information system, in order to misuse its resources or dis-

rupt its operation.

The mechanisms associated with the cyber�defence technologies are

responsible for finding and reporting all kinds of types of malicious

activity in the system or network, with the aim of reacting and stopping

the attack in the most appropriate way.

In general, it is desirable to be able to identify the exact attack that is taking

place in order to stop it and to recover from its effects.

In some particular situations, it will only be possible to detect and to report

the suspicious activity that has been found, given the impossibility of really

knowing what has happened and reporting how to stop it.

Generally, cyber defence mechanisms work under the premise of the worst-

case scenario, assuming that an attacker has gained access to the system and

is able to use or modify its resources.

The most notable elements within the category of cyber defence mechanisms

are the Intrusion Detection Systems (IDS).

Origins of the term IDS

One of the first cyber defence communities comes from the world of security in database
systems.

In these communities, rather than talking about attacks, they talk about intruders inside
a database. Most of the references to the term intruder or intrusion are usually changed
for attacks by other communities in the world of security (e.g., communities associated
with the security of industrial systems).

A second community associated with the origins of the term IDS comes from the world
of error detection and system failures. This community is interested in how to automate
the detection of situations in which the different components of a system behave ab-
normally. In the case of an IDS, the aim is not to detect behaviours associated with ran-
dom errors. On the contrary, the aim is to detect situations with marked intentionality.
While errors have a probabilistic behaviour, attacks leave a trail associated with human
behaviour, with malicious intent. For this reason, the term intruder is also used in these
communities, to differentiate these two kinds of situations.

We will now introduce the main definitions that are used in the field of intru-

sion detection, with the aim of clarifying common terms that we will use later.

GNUFDL •

8 Intrusion detection systems

An intrusion is a sequence of actions taken by a malicious adversary

with the ultimate goal of causing unauthorised access to a system or

network of systems.

The intrusion is the sequence of steps taken by the intruder.

Each step taken represents a violation of the security policy of the system or

the network. Therefore, the existence of a security policy indicating manda-

tory compliance actions, or with the malicious actions to be prevented, is a

key requirement to detect an intrusion. In other words, a violation can only

be detected when the actions observed can be compared to the set of rules

defined in the security policy.

Intrusion�detection� is the process of identifying and responding to

activities observed against the security policy of a system or network

of systems.

This last definition introduces the notion of the intrusion detection process,

which involves a whole series of technologies, users and tools needed to

achieve success. Next, we will see these technologies in more detail, from their

early origins to the current systems.

1.1. Background and current systems

Current intrusion detection systems are a direct evolution of auditing systems.

These systems were intended to measure the time that operators spent using

the systems they monitored, with millisecond accuracy, and served, among

other things, to bill for the service.

The first systems appeared in the 1950s, when the American company Bell

Telephone System created a development group with the aim of analysing

the use of computers in telephone companies. This team established the need

to use audits through electronic data processing, unlike the previous system

based on the preparation of paper reports.

GNUFDL •

9 Intrusion detection systems

This led the Bell System companies to embark on the first large-scale comput-

er-controlled telephone billing system in the late 1950s.

Figure 1 shows a simple diagram of the operation of an audit system, in which

the system events are captured by audit generators that will take the data to

the element in charge of storing them in a report file.

Figure 1. Operation of a classic audit system

Since the 1970s, the U.S. Department of Defense began to invest considerable

resources for research into security policies, directives, and control guidelines.

These efforts culminated in a security initiative in 1977, in which the concept

of trust systems was defined.

Trust�systems are systems that employ enough software and hardware

resources to enable the simultaneous processing of a variety of confi-

dential or classified information. These systems include different types

of information distributed into levels, which correspond to their degree

of confidentiality.

In the late 1970s, a section on audit mechanisms as a requirement for any

trust system with a high level of security was included in the Trusted Computer

System Evaluation Criteria (TSCSEC). This document, known as the Tan Book,

lists the main objectives of an audit mechanism that we can summarise very

briefly in the following points:

• To allow the review of access patterns (by an object or by a user) and the

use of system protection mechanisms.

Trusted Computer
System Evaluation
Criteria (TCSEC)

Series of documents of the
NSA (National Security
Agency of the United States
Department of Defense) on
trust systems, also known
as the Rainbowseries, due
to the colours of their cov-
ers. The main book in this
series is known as the Or-
ange Book). For more infor-
mation, see the website:
http://www.fas.org/irp/nsa/
rainbow.htm.

GNUFDL •

http://www.fas.org/irp/nsa/rainbow.htm
http://www.fas.org/irp/nsa/rainbow.htm

10 Intrusion detection systems

• To allow the discovery of both internal and external attempts to circum-

vent protective mechanisms.

• To allow the discovery of user transition when moving from regular to

high level privileges (privilege elevation).

• To allow blocking attempts by users to bypass system protection mecha-

nisms.

• To serve, in addition, as a guarantee to users that all the information col-

lected about attacks and intrusions will be sufficient to control the possi-

ble damage caused to the system.

1.1.1. Early solutions

The Intrusion Detection Expert System (IDES) project, developed between 1984

and 1986 by Dorothy Denning and Peter Neumann, was one of the first re-

al-time intrusion detection systems. This project, funded by the US Navy, pro-

posed a correspondence between anomalous activity and abuse, or misuse (un-

derstanding strange or unusual activity in a statistical context as anomalous).

IDES used profiles to describe the subjects of the system (mainly users),

and activity rules to define the actions that took place there (system

events or CPU cycles). These elements allowed establishing, by statisti-

cal methods, the patterns of behaviour needed to detect possible anom-

alies.

A second real-time intrusion detection system to highlight was Discovery,

which was able to detect and prevent security problems in databases. The nov-

elty of the system was in the monitoring of applications rather than analysing

an operating system in its entirety. By using statistical methods developed in

COBOL, Discovery was able to identify possible abuses.

Other systems were also developed to help American officials find trademarks

of internal attacks on the main computers of their airbases. These computers

were mainly corporate servers that worked with unclassified but very confi-

dential information.

One of the last important systems of this period was the Multics Intrusion

Detection and Alerting System (MIDAS), created by the National Computer

Security Center (NCSC). This detection system was implemented to monitor

the NCSC Dockmaster system, where one of the most secure operating systems

of the time1 was executed. Like the IDES system, MIDAS used a hybrid system

that combined both statistical detection of anomalies and the safety rules of

(1)It is the Multics operating sys-
tem, precursor of today’s Unix sys-
tems.

GNUFDL •

11 Intrusion detection systems

an expert system. MIDAS used a progressive analysis process consisting of four

levels of rules. In addition to these rules, it also had a database that it used for

determining signs of abnormal behaviour.

MIDAS was one of the first detection systems for Internet-connected

intrusions. It was published online in 1989, and it monitored the main-

frame Dockmaster in 1990, to strengthen user authentication mecha-

nisms.

1.1.2. Current intrusion detection systems

Since 1990, the fast growth of computer networks led to the emergence of new

intrusion detection models. As well as that, the damage caused by the famous

Robert Morris worm (in 1988) helped to unite commercial and academic ef-

forts in the search for security solutions in the field of cyber defence.

The first step was to merge the monitoring processes of the operating system

with the monitoring systems of network traffic. This was the case of the Dis-

tributed Intrusion Detection System (DIDS), capable of enabling a security

group to monitor security breaches through networks connected to the Inter-

net.

The initial goal of DIDS was to provide means to centralise control and publi-

cation of results in a central controller. Figure 2 shows the operating diagram

of the DIDS system.

GNUFDL •

12 Intrusion detection systems

Figure 2. Diagram of the operation of the Distributed Intrusion Detection System (DIDS)

At the same time, the first commercial intrusion detection programs began to

appear. Some companies developed them to occupy a prominent position in

the field of cyber security, although others did them to improve the levels of

protection required by national security agencies, such as the NCSC.2

Currently, a large number of intrusion detection systems to protect operating

systems and complete networks are available. Many of these systems are com-

mercial or reserved for military and research environments. There are also a

large number of free solutions that can be used without any restrictions.

1.2. General architecture of a detection system

Since the beginning of the 1980s, many studies regarding the construction

of intrusion detection systems have been carried out. In all these studies, dif-

ferent proposals and designs have been made in order to meet the follow-

ing requirements (More information available at: http://dx.doi.org/10.1007/

BF02994844):

• Accuracy. An intrusion detection system should not confuse legitimate

actions with malicious actions at the time of detecting them. When legit-

imate actions are detected as malicious actions, the detection system may

end up causing a denial of service against a legitimate user or system. These

types of detections are known as false�positives. The smaller the number of

false positives, the more precision the intruder detection system will have.

(2)It stands for National Computer
Security Centre

GNUFDL •

http://dx.doi.org/10.1007/BF02994844
http://dx.doi.org/10.1007/BF02994844

13 Intrusion detection systems

• Efficiency. The detector must minimise the undetected malicious activity

rate (known as false�negatives). The lower the rate of false negatives, the

greater the efficiency of the intrusion detection system. This is a compli-

cated requirement, as it can sometimes become impossible to obtain all

the necessary knowledge about past, current and future attacks.

• Performance. The performance offered by an intrusion detection sys-

tem must be sufficient to manage real-time detection. Real-time detection

must respond to intrusion detection before the attack causes damage to

the system. According to studies, this time should be less than one minute.

• Scalability. As the network grows (both in size and speed), the number

of events to be processed by the detection system will also increase. The

detector must be able to withstand this increase in the number of events,

without any loss of information. This requirement is of great relevance

in distributed attack detection systems, in which events are launched on

different equipment of the system and must be matched by the intruder

detection system.

• Fault�tolerance. The intrusion detection system must be able to continue

to offer its service even if different elements of the system are attacked

(including the situation where the system itself receives an attack or in-

trusion).

In addition, more recent criteria also include concepts such as knowledge com-

pleteness, implementation facility, maintenance facility and explanation of al-

gorithms used for detection. These new criteria are considered essential for the

future expansion of commercial IDS tools.

In order to normalise the heterogeneity of IDS architectures and tools, and

achieve the aforementioned criteria, standardisation communities such as

IETF3 have been working in recent decades on the conception of general-pur-

pose IDS architectures. One of these, the architecture known as CIDF,4 is

shown in Figure 3.

(3)Stands for Internet Engineering
Task Force

(4)Stands for Common Intrusion
Detection Framework

GNUFDL •

14 Intrusion detection systems

Figure 3. CIDF architecture (The Common Intrusion Detection Framework)

Early IETF working groups, like the well-known IDWG,5 complement archi-

tectures such as the CIDF with the definition of development requirements,

like the following:

1) The need to formalise the interaction between IDS tools with other securi-

ty elements, such as prevention mechanisms (firewall systems, access control

lists, etc.).

In this area, proposals for cooperation between the different security elements

have been worked on through the exchange of messages. These mechanisms

must ensure correct communication between the different elements of an IDS

architecture and provide additional criteria such as the security of communi-

cations, authenticity and integrity of the information exchanged (alerts and

events), etc.

(5)Stands for Intrusion Detection
Working Group

2) The need to define the exchanged messages (events, alerts, etc.) among the

system's elements. Therefore, the IETF has proposed formats for the exchange

of messages between security devices, such as IDMEF6 and IODEF.7

By observing the above standardisation efforts, we can identify the following

elements for the construction of an IDS-type general architecture:

1) event collectors

2) event processors

3) response units and remediation plans

(6)Stands for Intrusion Detection
Message Exchange Format, RFC
4765

(7)Stands for Incident Object De-
scription Exchange Format

Recommended link

The current version of the
IDMEF and IODEF specifica-
tions is currently under re-
view. We recommend seeing
the www.secef.net website
for more information.

GNUFDL •

https://www.secef.net

15 Intrusion detection systems

We will now see some of these elements in more detail.

1.2.1. Event collectors

The event collectors, also known as sensors, are responsible for collect-

ing information from equipment monitored by an IDS. The informa-

tion collected is transformed into a sequence of events. These sequences

will be analysed later by event processors.

The information stored in the events collected by the sensors is the decision

base for the IDS detection. It is very important to be able to guarantee its

integrity when facing potential modification attacks, when transmitting these

events between the sensor that created them and the processing component

that will treat them.

There are different ways to classify the possible implementations of these

event collectors. The most common proposals are detailed next.

The first type of collectors, also known as host-based�sensors�or�sys-

tem-based�sensors, are in charge of analysing and collecting informa-

tion about events that have happened at operating system level (such

as connection attempts and system calls).

These sensors are also known as application-based�sensors, in the case

of completing the information collected from the operating system,

with events originated from applications.

In the second category we find sensors that collect information from

events that have happened at the level of network traffic (for example,

analysing the IP headers of datagrams that pass through the network in-

terface). These types of components are known as network-based�sen-

sors.

The specific choice of the type of sensor will depend on the purpose of the

desired detection. In fact, communities concerned about intrusion detection

systems have thoroughly debated which sensors can offer better performance

from a detection and effectiveness point of view. An ideal IDS should unify

all possible options and offer a hybrid solution with the best of each option.

Here are some additional details of each type:

1)�Host-based�sensors. These sensors are easy to configure, apart from being

able to offer accurate information about events and potential attacks.

Snort, Suricata and Zeek

A widely used detection tool
as a network-based sensor is
Snort.
This tool is a network intrusion
detector developed under the
free software paradigm, capa-
ble of carrying out real-time
traffic analysis, as well as log-
ging packets in TCP/IP net-
works.
Two complementary tools in
addition to Snort are Suricata
and Zeek (formerly called Bro).
Check the web-
sites www.snort.org,
www.suricata.io and
www.zeek.org for more infor-
mation.

GNUFDL •

https://www.snort.org
https://www.suricata.io
https://www.zeek.org

16 Intrusion detection systems

The data generated by these sensors can have a high density of information,

such as the information reported by the file servers of an operating system

log. They may also include a large amount of preprocessing information that

later facilitates the work of other data processing components.

A disadvantage is that these sensors can have a significant impact on the effi-

ciency of the system in which they are executed.

2)�Network-based� sensors. The main advantage of network-based sensors,

compared to other solutions, is the possibility of being able to work in a non-

intrusive way (i.e., in a passive manner). The collection of information does

not affect the way the equipment works or the infrastructure itself. Since they

do not necessarily reside in the equipment to be analysed, they are more re-

sistant to attacks.

Moreover, most network-based sensors are also independent of the operating

system and can obtain network-level information (such as the existence of

fragmentation in IP datagrams) that could not be provided by host-based sen-

sors.

Some network-based sensors are actually switches with an analysis ca-

pability that is transparent to the rest of the system.

As the main disadvantage of network-based sensors, it is worth noting the low

scalability that this approach offers. In cases of networks with very high traffic

loads, these sensors are likely to start losing packets, which means a loss in

their ability to collect information.

These sensors would hardly be able to continue working normally on high-

speed networks, such as Ethernet networks at speeds higher than a gigabit.

Another problem with network-based sensors is the increase in encrypted

communications. The use of cryptography to protect communications makes

the information to be collected incomprehensible to the sensors and thus re-

duces their detection capabilities. Some current solutions to deal with this

problem include combining classical cryptography with homomorphic cryp-

tography, to process part of the traffic even though it cannot decipher it.

Installation of event collectors

In addition to the sensor type, it is also important to determine the exact

place where these components should be placed (from where to collect the

information). The simplest to place are application-based sensors, generally

GNUFDL •

17 Intrusion detection systems

installed in the parts of the program in which debugging and generation of

log files services are offered. But the situation is more difficult for the other

variants.

When considering the installation of system-based sensors, the wide variety of

operating systems there are, and the different facilities offered by each, poses a

serious problem. In addition, it is not easy to determine what part of the large

amount of information created by the kernel of an operating system should

be relevant when analysing.

In the case of Unix-like operating systems, there is the Orange Book proposal

(which we have already mentioned in this module), which shows some points

of interest in which information should be analysed.

In the case of network-level sensors, segmentation through switches is a major

drawback in choosing the right location to place these sensors. For example,

a star topology causes packets to be directed only between the two parts of

a communication, so the sensor should be placed at a point where it could

analyse any exchange of information.

A first option would be to place the sensor on the link where all the equipment

on the network joins. This option could mean the need to analyse such a high

amount of data that the sensor would end up losing information.

The other option would be the placement of the sensor between the network

link that separates the interior and the exterior, as if it were an additional

perimeter protection system.

A variant of these two options would be the use of the tap port that many

switches offer. It is a special port that reflects all the traffic that passes through

the equipment. But this can easily overload the subsequent analysis capacity

if the amount of traffic is very high. In addition, the internal bandwidth of

the device is not always enough to deal with all active ports at once. If the

traffic analysed begins to grow, the capacity of the tap port may be exceeded,

with the corresponding loss of packets that this would entail.

1.2.2. Event processors

Event processors, also known as analysers, form the core of the detec-

tion system. They have the responsibility to operate on the information

collected by the sensors in order to infer possible intrusions.

GNUFDL •

18 Intrusion detection systems

In order to infer intrusions, the analysers implement a specific detection

scheme. Two of the most commonly used methods for detection are the mis-

use detection model and the anomaly detection model. We will now briefly

comment on these two detection schemes.

Misuse-based detection

The detection of intrusions based on the misuse model has prior knowl-

edge of malicious sequences and activities. Event processors that imple-

ment this scheme analyse events for known attack patterns or activity

that attacks typical vulnerabilities.

The sequences or patterns described are known as attack signatures and could

be compared to the virus signatures used by current antiviruses.

Thus, the detection components based on the misuse model will compare the

events sent by the sensors with the attack signatures that they keep stored in

their knowledge bases.

When an event or sequence of events matches an attack signature, the

analyser will issue an alert.

When implementing a detection scheme based on misuse, two of the models

most commonly used are analysers based on pattern recognition and analysers

based on state transitions:

1)�Pattern�recognition�analysers. By using if-then-else rules to examine data,

these analysers process the information through internal functions in the sys-

tem, in a completely transparent way to the user. Figure 4 shows the diagram

of an if-then-else rule.

Figure 4. Example of an if-then-else rule

Although this model allows us to detect an intrusion from already known pat-

terns, the main disadvantage is that these patterns do not define a sequential

order of actions.

GNUFDL •

19 Intrusion detection systems

Detecting attacks composed of a sequence of events using this method can

lead to great difficulties. The maintenance and updating of the pattern data-

base are other critical points of this model.

2)�State�transitions. This model makes use of finite automata to represent

the attacks, in which the nodes represent the states, and the arrows (arcs), the

transitions. The use of transition diagrams (Figure 5) facilitates the association

between states and the different steps taken by an intruder from the time it

enters a system, with limited privileges, until it gains control.

Figure 5. Example of a state transition diagram

As the main advantages of this model, we can highlight that transition dia-

grams allow a high-level representation of penetration scenarios, and offer a

way to identify a series of sequences that form an attack.

As well as this, these diagrams define very simply the attacks to be detected.

The analysis engine could use different variants of the same diagram to iden-

tify similar attacks.

By contrast, transition diagrams, and therefore different steps in the sequence,

must be created using specific languages that are often very limited and insuf-

ficient to recreate complex situations.

This limitation means that this model cannot detect some of the most com-

mon attacks, and that the use of additional analysis engines is necessary as a

complement to this model. For example, engines with Bayesian inference or

first-order logic, also used by deductive databases.

Anomaly-based detection

Event processors that base their detection on an anomaly scheme will try to

identify suspicious activities by comparing the behaviour of a user, process or

service, with profile behaviour classified as normal. A profile serves as a metric

(measurement of a set of variables) of normal behaviours. Any deviation that

exceeds a certain threshold with respect to the stored profile will be treated

as evidence of an intrusion.

Disadvantages of
anomaly-based detection

The drawbacks of the anom-
aly-based detection model
make most of the commercial
detection systems available
today generally implement
schemes based on the misuse
model.

GNUFDL •

20 Intrusion detection systems

One of the requirements of this model is the need to initialise a default pro-

file that gradually adapts to the behaviour of a normal (non suspicious) user,

process or service. It is therefore necessary, to use heuristics and statistical de-

scriptors that help to correctly model changes in behaviour as soon as they

happen. Other proposals seek to incorporate artificial intelligence techniques

to carry out these tasks (for example, use of machine learning with neural

networks).

Anomaly-based detection has clear advantages over misuse-based detection.

A first advantage is the possibility of detecting unknown situations (for ex-

ample, zero-day attacks). This is possible since, regardless of the source of the

intrusion, as soon as malicious activities start to deviate from the normal be-

haviour, the event processor will launch an alert.

Anomaly-based detection also has disadvantages. One of the first disadvan-

tages is the lack of guarantee in the detection process. Stealthy intruders can

slowly perpetrate malicious actions to evade detection.

As a second drawback, we can highlight the difficulty in explaining and accu-

rately describing the attacks detected by anomaly-based analysers. Generally,

an analyser not only has to trigger an alert, but also must specify where the

attack comes from, what changes the system has undergone, etc.

Finally, the high rate of false positives and false negatives that can occur us-

ing this detection scheme is a serious drawback, since a deviation from the

expected profile will not always coincide with an intrusion attempt. In the

case of processors in which the events come from network-based sensors, it

is possible that the number of triggered alerts easily get unmanageable. This

often causes network administrators to ignore alerts issued by the detection

system, or even deactivate the system altogether.

All of these drawbacks make most of the commercial detection systems avail-

able today implement their analysers by using the misuse detection model.

Stored data

In most situations, the volume of events collected by the IDS, including the

alerts triggered by the analysers, becomes so high that a storage process outside

the detector is necessary. Let us suppose, for example, that all packets in a high-

speed network must be inspected by the analysers of the detection system. In

this case, it is necessary to consider an external storage hierarchy that reduces

the volume of information without penalising the possibilities of analysis.

One possibility is the classification of information in terms of short and medi-

um term analysis. In the case of a short� term analysis, the information is

stored directly in the same components of the IDS (in internal buffers), so that

after processing the data, and transforming it into an event format, it is trans-

Complementary reading

The following article (avail-
able online) provides more
information about possible
improvements needed in the
world of anomaly-based de-
tection, to change the cur-
rent commercial situation:
Seng, S; Garcia-Alfaro, J;
Laarouchi, Y. (2021). “Why
anomaly-based intrusion
detection systems have not
yet conquered the industri-
al market?”, 14th Interna-
tional Symposium on Founda-
tions and Practice of Securi-
ty, Springer Nature <https://
doi.org/10.1007/
978-3-031-08147-7_23>.

GNUFDL •

https://doi.org/10.1007/978-3-031-08147-7_23
https://doi.org/10.1007/978-3-031-08147-7_23
https://doi.org/10.1007/978-3-031-08147-7_23

21 Intrusion detection systems

mitted to other processing elements. In the case of medium�term informa-

tion, the pre-processed data is stored on secondary devices (with the appro-

priate format) rather than being transmitted to the internal system processors.

The storage time for medium-term information can be two or three

days, with the aim of being consulted by the system processors if the

analysis process requires it.

Eventually, and after a compression process (to reduce the size), some of the

medium-term information may continue to be stored for long periods of time

(around months or even years) waiting to be consulted by the�long-term de-

tection processes.

1.2.3. Response units and remediation plans

The response units are responsible for initiating or providing decision

aid information, in relation to possible repair plans that respond to a

detected intrusion. Very rarely will response actions be automatic (ac-

tive�response). Most of them simply provide information and require

human interaction (passive�response), in order to assist with addition-

al information before activating the final response by a security expert

(or the administrator himself).

Responses and remediation�plans aim to act against an intrusion, trying to

neutralise the tasks already performed by the intruder before reaching the fi-

nal objective. An active response, right at the moment when the intruder is

detected, is usually not recommended. In general, response units will attempt

to simulate and provide decision aid information, while the intrusion is still

ongoing. Thus, administrators will be able to try to anticipate and take actions

that neutralise the objectives of the intruder. An example could be to suggest

new configuration rules to the firewall system associated with the affected

components, with the aim of blocking future network connections such as

the one that the intruder originated. Another example of a remediation plan

could be the execution of additional tools to track the next phases or attacks

associated with the intruder, to be able to perform the appropriate analysis

later.

In most cases, we will have rather passive responses, which are limited to

launching an external alert, to inform and describe the attack detected to the

system administrators.

Most response components offer different ways to send this information to

administrators, such as email, SMS messages, WhatsApp, GLPI tickets, etc.

GNUFDL •

22 Intrusion detection systems

In the case of automating the remediation plan, without first going through

the system administrators, there could be collateral damage. For example, an

active response (without human intervention) could lead to a denial of ser-

vice against legitimate users or systems. It is very likely that some of the alerts

thrown by the processors may handle are incorrect (problem�of�false�posi-

tives).

For this reason, if a response unit immediately cut off the connection that

originated this false positive, it could imply the loss of work of a legitimate

user or service.

In most systems (e.g., e-commerce servers) such errors can lead to customer

loss, which is inadmissible. Hence, most companies in the electronic com-

merce sector opt for hiring specialists who manually analyse the reports gen-

erated by the detection system in order to determine whether an active re-

sponse to this guidance is necessary or not.

Finally, it should be noted that, like sensors, response units can also be classi-

fied into different categories according to the point of action. Both categories

are again host-based�response�units (in charge of acting at the operating sys-

tem level, for example, by blocking users, process completion, etc.) and net-

work-based�response�units (in charge of acting at the network level, for ex-

ample, dropping out connection attempts, applying network address filtering,

etc.).

Problem of false positives
and false negatives

A false positive occurs in those
situations where an IDS char-
acterises legitimate traffic,
which is not part of any at-
tack, as malicious; it is, there-
fore, an event detected by mis-
take. Contrarily, a false nega-
tive takes place in those situa-
tions in which malicious traf-
fic is discarded and considered
legitimate traffic by mistake;
it is, therefore, an event that
should be detected, but which
escapes the detection process.

GNUFDL •

23 Intrusion detection systems

2. Management of events, alerts and incidents

In the previous section we introduced intrusion detection systems as isolat-

ed solutions, with components implemented in general architectures that al-

low the detection of elementary actions. These actions usually correspond to

previous stages of an intrusion or the final objectives of an intrusion, that

is, actions coordinated with complex objectives, beyond mere data theft. We

are talking about coordinated actions that can seek long-term attacks, such

as disrupting industrial or financial processes, with periods that go beyond

months and even years. In order to anticipate these situations and prepare

remediation plans accordingly, additional elements must be used to complete

and conclude the detection process made by the components of the tradition-

al IDS that we have seen in the previous section.

In this section, we will deal with these additional elements, which we

summarise with the concept of NMS and SIEM8 type of platforms. Al-

though there are many differences between both concepts (the NMS

are more focused on error diagnosis, and SIEM are more focused on the

detection and activation of remediation plans), in this section, we will

refer only to SIEM platforms, understanding it as a combination of both

concepts.

Coordinated actions and distributed attacks

Situations that cannot be identified by looking for patterns in isolation, but must be
detected from the combination of multiple indications found at different points in a
system.

SIEM platforms are absolutely essential nowadays. Although they have existed

for more than three decades, the expansion of the Internet in corporations

and institutions has led to the recent developments and improvements that

we summarise below:

(8)NMS stands for Network Man-
agement System and SIEM stands
for Security Information & Event
Management

Recommended links

Some products (with com-
mercial and free software ver-
sions), related to the NMS
and SIEM concept, can be
consulted at the follow-
ing links: www.nagios.org
(NMS), www.vigilo-nms.org
(NMS), www.prelude-
siem.org (SIEM), https://
cybersecurity.att.com/prod-
ucts/ossim (SIEM).

• Collection�and�normalisation�of�events. A SIEM must be able to manage

the collection of events from extremely heterogeneous sources. Therefore,

a process of data normalisation must be carried out, not only at the syn-

tactic level, but also at the semantic level. At the syntactic level, the exis-

tence of formats and standards, such as the IDMEF9 and IODEF10 formats

can help in the tasks of syntactic normalisation of alerts from heteroge-

neous collectors or detection sensors. As for semantic normalisation, the

use of ontologies, modelling languages such as the UML (Unified Modeling

Language), or any other mechanism for the formal representation of alerts,

can help in this matter.

(9)Stands for The Intrusion Detection
Message Exchange Format.

(10)Stands for Incident Object De-
scription and Exchange Format.

GNUFDL •

https://www.nagios.org
https://www.vigilo-nms.org
https://www.prelude-siem.org
https://www.prelude-siem.org
https://cybersecurity.att.com/products/ossim
https://cybersecurity.att.com/products/ossim
https://cybersecurity.att.com/products/ossim

24 Intrusion detection systems

• Consolidation�of�the�monitoring�functions�of�the�detection�tools. The

second vital function attributed to a SIEM is the consolidation of low-level

alerts produced by the security components of a network, among which

firewall systems, IDS, antivirus and vulnerability detection systems can be

highlighted. As we have seen in the case of IDS, network security tools are

vulnerable to problems related to false positives and false negatives. For

this reason, what is expected from the use of a SIEM is the management

of the processes of fusion, aggregation and correlation of alerts from pre-

vious hosts, and to reduce the rate of false positives. In addition, they will

improve the diagnosis of errors to also reduce false negatives.

• Preparation�of�remediation�plans. In general, most IDSs are usually con-

figured as purely passive mechanisms. However, solutions available nowa-

days provide the technology needed to turn them into active or semi-ac-

tive solutions (waiting for confirmation from an operator before activat-

ing the reaction process), with the aim of being able to react and neutralise

the detected activities or actions. As we have seen in the previous section,

this functionality must be analysed and activated with caution. The nor-

malisation and correlation tasks of a SIEM should improve this point and

reduce the potential collateral damage of remediation plans.

We will now detail some of the required tasks in order to carry out the func-

tionalities that are expected of a SIEM.

2.1. Configuration of event collectors

In addition to information from an IDS, the data collected by a SIEM may

come from any other component with the capability of creating log files, such

as:

• Firewall� systems (or any other type of component for packet filtering

through network-level access control lists). Although we have often seen

these components as prevention mechanisms, which aim to block traffic

considered dangerous to the system, these components can be configured

to report the information observed through their network interfaces. Their

audit files are therefore of great interest to complement the process of

aggregation and correlation of events of the SIEM.

• Email�servers (based on protocols such as SMTP, POP or IMAP). Again, the

audit files generated by these servers will offer a wealth of information to

characterise and discover malicious activities, such as the spread of worms,

zero-day attacks, or to control traffic associated with other illegal activities.

• Traffic�management�servers (based, for example, on the SNMP protocol).

The information reported by the components will also contain informa-

GNUFDL •

25 Intrusion detection systems

tion associated with actions related to the violation of the internal securi-

ty policies of the organisation where they are installed.

Another thing to keep in mind during the configuration of the SIEM

detection sensors will be the data, events and alerts provided by an IPS

(Intrusion Prevention System). An IPS is primarily based on research

into the vulnerabilities of equipment and systems. Most IPS-type solu-

tions actually combine intrusion detection techniques with traditional

access control mechanisms. The border between IDS and IPS is current-

ly difficult to define and can be complemented with many other pre-

ventive solutions, such as vulnerability detection systems and antivirus

systems.

Vulnerability detection systems try to analyse the configuration of systems

deployed in network, with the aim of discovering poorly configured parts that

potentially present vulnerabilities that could be the target of attacks. These

systems also include detection of software defects (i.e., programming errors or

bugs), conception errors in the topological configuration of a network, hard-

ware errors, etc. However, antivirus systems are designed to protect worksta-

tions and servers against known malware. Most of these systems will use a

database of antivirus signatures that identifies the known malicious software.

From the prevention point of view, it is expected that both a vulnerability

detection system and an antivirus will be able to correct vulnerabilities and

disinfect the equipment that are malware victims. Thus, the installation and

combination of an IDS with other prevention mechanisms has the ultimate

aim of detecting and reacting to the general concept of intrusion.

2.2. Information and collection policies

Since the purpose of a SIEM is to be able to provide system operators with

centralised management capabilities, it is common for the configuration of

the collection components associated with the SIEM (IDS and the components

of previous examples) to be done through the SIEM user interface. That is why

a global information collection policy is usually used, administered by the

SIEM, and which can then be refined for the local configuration of each of the

equipment associated with the SIEM (IDS, firewall, mail servers, etc.).

This policy, or its associated sub-policies, is usually defined by rules, based on

the use of regular expressions, the search for traffic patterns, signalling proto-

cols, etc. The components may also incorporate the possibility of dealing with

a collection of events through configurations and based on the recognition of

anomalous activities. Consequently, the policy must offer the required syntax

and semantics to be able to deal with the use of statistical models, collected

through data mining, expert systems, Bayesian networks, etc.

GNUFDL •

26 Intrusion detection systems

SIEM’s event collection and log information policy may also involve execut-

ing a set of actions and preparing the data before passing them to the next

stage. For example, it may involve data preprocessing from the execution of

regular expressions, with the aim of conducting a search for specific patterns

(search for signs of a particular virus, or for a specific port scan action with

specific system components), as well as replacing specific parts of the events

to improve the identification of a particular component or to enrich the data

(for example, adding computer names as a complement to their IP addresses).

Some other technical criteria that will need to be considered in a SIEM’s event

collection policy will be to determine precisely the location of the collection

components that must be controlled in the system. This aspect will determine

the coverage and the global vision modules that the system will incorporate

to ensure that the subsequent process of aggregation and correlation of infor-

mation guarantees quality management. Therefore, it will also be necessary to

specify, within the collection policies, the physical topology and the logical

description of the system that the SIEM must monitor. It is important to be

able to treat and structure this system in terms of subnetworks, so that the

parts of the system that have a greater need for surveillance can be identified,

and thus the correlation functions can recognise the tasks associated with spe-

cific incidents for each subnetwork of the system. For example, if the system

contains DMZ-type areas (demilitarized zones), it should be possible to create

specific rules to closely monitor the actions being taken on this part of the

network. The use of subnetwork masks (which is specified in terms of CIDR11

or interdomain routing without classes, for example) is common in the log

file collection policies of most SIEMs.

2.3. Normalisation of the collected information

Once the information is collected, and before moving on to subsequent

processes for detecting attack scenarios, the SIEM must ensure that it is possi-

ble to put into correspondence all the data coming from the detection of the

same event (such as malicious, suspicious or anomalous events). Thus, there

must be a set of normalisation processes to preprocess the collected data and

anticipate problems that could hinder the correspondence of data related to

events derived from the same network traffic flow (such as the origin of the

traffic, the destination, the ports, etc.) and that correspond to the supervision

tasks of different monitoring sensors installed in different places of the system

(either deployed in the same domain or in different domains).

The normalisation process must ensure, for example, that data associated with

network traffic have the same format with regard to the classification of the

origin of traffic and also metadata associated with the time at which the event

was detected, associated protocols and services, origin and destination ad-

dresses, content of the packets associated with traffic, etc. Since the nature

of the sensors is potentially heterogeneous, the normalisation process must

(11)Stands for Classless Inter-Do-
main Routing.

GNUFDL •

27 Intrusion detection systems

guarantee, either with SIEM proprietary formats, or with efforts from existing

standards, that there are no interoperability problems that limit the expres-

siveness of the information that the SIEM correlation module will have to add.

Examples of normalisation efforts

Some examples of efforts regarding the problem of normalisation are the following:

• CIDF (Common Intrusion Detection Framework)
• IDWG (Intrusion Detection Working Group)
• IDMEF (Intrusion Detection Message Exchange Format)
• INCH (Extended Incident Handling)
• FINE (Format for Incident Report Exchange)
• IDIP (Intrusion Detection and Isolation Protocol)
• OSEC (Open Security Evaluation Criteria)
• IODEF (Incident Object Description and Exchange Format)

Each of the above examples has tried to define common languages to specify

the description of events and the activities associated with the events that se-

curity components must exchange. Apart from languages (both syntactic and

semantic) to guarantee homogeneity in data exchange, it is also a priority to

allow the description of a common process that specifies the precise protocol

for the exchange of data between the different sensors configured in a SIEM.

Of the examples listed above, two of the formats and procedures that have the

support of working groups of the Internet Engineering Task Force (IETF) are

the IDMEF12, RFC 4765 and the IODEF13 (summarised in Figure 6).

Figure 6. Components associated with efforts such as IDMEF and IODEF

2.4. Aggregation and fusion of information

Data aggregation and fusion functions are used to intelligently reduce large

volumes of data that are likely to contain redundant events (repetitions and

congruent information). Both functions must be applied before matching

events detected by different system components. First, the aggregation process

will have to be responsible for grouping the data resulting from the detection

of the same event, reported by one same sensor or by different ones. Once the

grouping of this information is done, the process of merging the information

(12)Stands for Intrusion Detection
Message Exchange Format.

(13)Stands for Incident Object De-
scription Exchange Format.

Link of interest

The last version of the ID-
MEF and IODEF specifi-
cations is now being re-
vised. For more information,
we recommend seeing the
http://www.secef.net/ web-
site.

Complementary reading

You will find more informa-
tion about the model associ-
ated to IDMEF in the follow-
ing book:
Stallings (2017). Cryptog-
raphy and Network Security -
Principles and Practice (7th
edition), Pearson Education,
Inc., Hoboken, NJ. All rights
reserved. See chapter 22 for
more information.

GNUFDL •

http://www.secef.net/

28 Intrusion detection systems

will take place, with the aim of summarising and offering a single datum that

characterises the detected event. Figure 7 shows the difference between the

aggregation and fusion functions with a simple example.

Figure 7. The difference between aggregation and fusion

During the aggregation process, the information corresponding to detected

events will be grouped into sessions and will attempt to unify the data of the

same event so that they can be used later during the fusion process, such as

the source address, the destination address, the ports, the protocols, etc. In

this way, the different data associated with an attack on a specific element of

the system will be grouped into a single session and a single identifier. The

rest of the data reported by other system sensors will be linked to the same

reference, so that during the final fusion process it will be possible to gener-

ate an identifier alert. This alert will contain all the information observed by

the different sensors configured by the SIEM. The alerts generated from the

fusion process will therefore contain a synthesis of all SIEM knowledge about

each one of the basic attacks observed by the monitoring system. As a result,

the amount of data needed to be stored in the system is reduced without any

loss of information. Once all the information reported by the system has been

merged, the alerts will be communicated to the last SIEM component, respon-

sible for managing and matching (correlating) the flow of alerts.

2.5. Correlation of alerts and generation of reports

In general, we can define the alert correlation process as the conceptual

interpretation of multiple alerts with the aim of providing a semantic

improvement and reducing the overall amount of alerts in an intrusion

detection system.

The correlation of alerts is therefore considered one of the keys in the evolu-

tion of intrusion detection systems, as it tries to solve the most relevant draw-

backs of these systems (i.e., excessive alerts), improve them semantically and

reduce false positives and negatives. The studies related to the correlation of

GNUFDL •

29 Intrusion detection systems

alerts in the field of intrusion detection are relatively recent. Most of them

deal with observations and experiments made in current systems. The theo-

retical part in this field is still in the process of evolution.

Most commercial SIEMs still do not have real functionalities for conducting a

full alert correlation. Although most of the solutions that exist talk about cor-

relation services, the vast majority are limited to storing logical links between

alerts stored in the same relational database that the responsible administra-

tor can then consult with a control console. In contrast, within the field of

academic research on intrusion detection systems, there are a large number of

proposals for the inclusion of alert correlation techniques in new generation

systems.

Most of these proposals essentially exploit the information contained within

the alerts and, in addition, try to make explicit references to annexed knowl-

edge, necessary for the final process of matching all the events observed in

the same system. Therefore, the correlation in these systems is not limited on-

ly to the information contained within the alerts generated by SIEM probes,

but they also make use of a prior knowledge of the surveillance state of the

systems, on the attacks that can be made, and even on the topology of the

system and the correlation rules generated by the operators and interpreted

by expert systems. Figure 8 summarises these types of correlation systems.

Figure 8. Correlation function

As we can see in Figure 8, the first entry in the correlation process corresponds

to the events already aggregated and fusioned by the lower SIEM modules. The

objective of the correlation process is precisely to match these groupings of

events and reconstruct attack scenarios to which the observed actions could

belong. To do this, it will be necessary to combine the received alerts with the

physical and logical information about the system (for example, the topology

of the system and the structuring of the IP addressing of the equipment) and

the predefined knowledge of malicious activities. The latter is represented in

Figure 8 in the form of correlation rules.

GNUFDL •

30 Intrusion detection systems

The physical and logical properties of the network must be specified in a topo-

logical database, either manually (by system administrators), or through the

use of automatic discovery and assisted creation services of network topolo-

gies. The latter must be responsible for the creation of topological maps with

the configurations of the devices and the security policies associated with the

protected information system.

The awareness of malicious activities must be configured in the system by

means of correlation rules. Each correlation rule will be defined by character-

ising sets of actions corresponding to the same intrusion scenario, and will

specify the required conditions to carry out an action and the consequences

on the system after the execution of each action. As with the detection rules

of an IDS based on misuse, these correlation rules will be the basic element to

ensure the detection of attack scenarios formed by the actions detected in the

system. Therefore, to ensure the effectiveness of the correlation process, it will

be of paramount importance to ensure a correct configuration of the relevant

correlation rules for each system, as well as its correct updating and commis-

sioning. The elimination or corruption of a single rule containing information

about multiple incidents may result in the loss of detection of a large number

of scenarios. The configuration of this part of the SIEM will therefore be very

prone to errors and requires a deep knowledge by the operators in charge of

configuring the system.

The detection of an incident or intrusion scenario is derived, during the corre-

lation process, from the series of events indicated by the set of correlation rules

preconfigured in the system. From a small set of correlation rules, it is possible

to define many intrusion scenarios. Thus, the aim of the correlation process

is to reduce the excess of information that the system operator will have to

manage. Instead of asking the administrator to analyse thousands of events,

the correlation process provides the generation of incident reports. Each re-

port will contain the representation of scenarios that, with a high probabili-

ty, could have been developed in the system from the events (i.e., primitive

actions) detected by the SIEM probes.

With the same aim, the correlation process can also be configured to reduce

the number of false alerts that are analysed (false positives). To do this, the

system can be configured to execute internal verification actions triggered af-

ter the generation of each intrusion scenario and verify the certainty that this

incident has occurred in the system or not. In this way, incidents that can

be discarded with a high probability will be eliminated from the final report

that the operator must prepare. This internal verification may be limited, for

example, in the execution of an analysis of vulnerabilities of the system that

serves to decide if a specific incident can be discarded, if the associated vulner-

abilities are not present in the system represented in the system’s topological

database; that is, an incident involving the exploitation of vulnerabilities or

services not deployed in the system may be discarded with a high probabili-

ty and thus, avoid overloading the system operator’s analytical capabilities.

GNUFDL •

31 Intrusion detection systems

Additionally, these incidents may be reported as false positives rather than

alerts or intrusion scenarios. All this will facilitate the ordering of the response

mechanisms in the system and also the optimisation of the remediation ac-

tions that will have to be deployed in the system on the real incidents that

have been detected.

Finally, as a graphic complement to the alert correlation, most SIEMs offer

graphical interfaces (of the dashboard type) to manage the generation of re-

ports and provide command control to the end user. Figure 9 summarises this

process, concluding the presentation of the typical components of a SIEM.

Figure 9. Stages associated with the generation of SIEM reports

GNUFDL •

32 Intrusion detection systems

3. Detecting network intruders with Snort

Snort is a very complete open source security tool for creating intrusion de-

tection systems in network environments. It is very popular among the com-

munity of network and service administrators. Thanks to its ability to capture

and record packets in TCP/IP networks, Snort can be used to implement from

a simple packet sniffer for traffic monitoring of a small network to a complete

intrusion detection system in real time.

As a network monitor, Snort behaves like a true vacuum cleaner (hence its

name) of IP datagrams, which offers different possibilities in terms of their

treatment: from acting as a simple passive network monitor that is responsible

for detecting malicious traffic that circulates through the network to the pos-

sibility of sending all the captured traffic to log file servers or database servers.

But, apart from excellent features such as packet detector and alert genera-

tor, Snort has many other features that have allowed it to become one of the

most complete software solutions for the construction of detection systems

in network environments based on pattern recognition. Snort is defined as a

Lightweight Network Intrusion Detection System sensor. This lightweight qual-

ification means that, as an IDS, its design and implementation allow it to op-

erate under different operating systems and that its functions as a detection

mechanism may be part of different (even commercial) security products. The

latest versions of Snort also define themselves as an IPS, that is, an Intrusion

Prevention System, since they offer the possibility of blocking traffic, in active

response unit mode, as a complement to the detection of intrusion attempts.

However, in this section we will discuss Snort only as a collector of network

events, that is, as a network sensor for the detection of intruders, since this is

its initial, and best known, function.

In fact, Snort’s popularity has increased in recent years in parallel with the

increasing popularity of open source operating systems, such as the Linux and

BSD family of systems. However, its nature as an open source product does

not limit it to being available only for such operating systems. Snort can run

on commercial solutions, such as Microsoft Windows.

From the point of view of its detection engine, Snort would be part of the

detection category based on misuse. Using signature recognition, Snort will

match all captured traffic against its detection rules.

GNUFDL •

33 Intrusion detection systems

A Snort detection rule is nothing more than a set of requirements that

will allow it to activate an alert, if they are met. An example would be a

Snort rule that would verify the use of P2P applications for file sharing

over the Internet, while verifying the use of the GET chain in services

other than the traditional HTTP protocol port. If a packet captured by

Snort matches this simple rule, its notification system will issue an alert

to indicate the facts. Once the alert is released, it can be stored in dif-

ferent ways and with different formats, such as a single system log file,

an entry into an alert database, a SNMP event, etc.

We will now see the origins of Snort and an analysis of its architecture and

some of its most remarkable features.

3.1. Origin and architecture of Snort

Very briefly, we can define Snort as a packet sniffer with additional functional-

ities for packet logging, alert generation and a misuse-based detection engine.

Snort was developed in 1998 under the name APE. Its developer, Marty Roesch,

was trying to implement a multiplatform packet detector (although the initial

development was made for the GNU/Linux operating system) that had differ-

ent options for classifying and displaying the captured packets. Marty imple-

mented Snort as an application based on the libcap library (for the develop-

ment of packet capture), which ensured great portability in both the capture

and in the collected traffic format.

Snort began to be distributed through the Packet Storm website (http://

www.packetstormsecurity.com) on the 22nd of December, 1998, with only

one thousand six hundred lines of code and a total of two source files. At that

time, the main use given to it by its author was an analyser of his network

connections with a cable modem and as a debugger of the network applica-

tions he was implementing.

The first signature analyser developed for Snort (also known as a rule analyser

by the Snort development community) was added as a new application func-

tionality in January 1999. This new functionality allowed Snort to start being

used as an intrusion detector.

In December 1999, Snort version 1.5 was released. In this version, its author

decided on a new architecture based on plugins, which is still preserved in

current versions. After this version, Marty Roesch left the company where he

worked and began to dedicate himself full-time to the task of adding new

functionalities to improve the configuration capabilities and facilitate the use

of Snort in more professional environments. Thanks to Snort’s great accep-

tance among the community of administrators, Marty thought it was a good

Commercial version of
Snort

Although Snort is available un-
der the GPLv2+ (GNU Public
Licence, version 2) licence, it
also offers alternative licences
and commercial products.
Most alternative products are
based directly on Snort and
distributed by the Cisco com-
pany.
Cisco acquired the rights to
Snort in 2013, along with the
Sourcefire company, founded
by the creator of Snort, Marty
Roesch. The analysis of com-
mercial versions of Snort is be-
yond the scope of this didac-
tic module. For more infor-
mation, you can visit http://
cisco.com and search for infor-
mation about these products.

More than just a detector

The author of Snort was try-
ing to indicate with the name
Snort that it was more than
just a detector. The term snort
means inhaling obsessively
and violently. In addition, Mar-
ty said at the time that he al-
ready had too many applica-
tions called a.out and that all
popular names for detectors,
called TCP-something, were al-
ready occupied.

GNUFDL •

http://www.packetstormsecurity.com
http://www.packetstormsecurity.com
http://cisco.com/
http://cisco.com/

34 Intrusion detection systems

time to offer his product with a support for companies and obtained the nec-

essary funding to establish Sourcefire. Cisco acquired the Sourcefire rights in

July 2013.

However, Snort remains free code and promises to do so forever. Version 3 of

Snort features more than 100,000 lines of code and involves a complete re-

structuring of the original design of its initial architecture. The free version of

Snort, under the GNU licence, can be freely downloaded from Snort’s website

(https://snort.org) and allows any user to have support for the latest available

versions and the latest updates to the rule files for those versions.

Currently, Snort has a large repertoire of accessories that allow reporting no-

tifications to different database managers and a large number of traffic pre-

processors that allow analysing remote calls and port scanning before these are

contrasted with the set of rules associated with the search for new incidents.

Snort’s rule sets have also evolved as the application has grown. The size of

the rules sets for the latest Snort version available for download is increased in

a similar way to the speed of new releases of exploits. These rule files are cur-

rently classified into different categories such as P2P, denial-of-service attacks,

attacks against web services, viruses, pornographic traffic, etc.

Each of these rules is associated with a unique identifier (Sensor ID, SID) that

allows recognising and finding information about the detected attack or mis-

use. For example, the SID for the SSH banner attack is 1838. In addition, thanks

to Snort’s extensive use among the network administrator community, oth-

er intruder detection tools have adopted the Snort rules format and also the

coding used for the dumping of the captured packets (based on libcap).

Support for these rule files is increasing every day. In this way, any user of

Snort, or any other network detection tool with a compatible rule format,

could create its own rules as new attacks appear and collaborate with the Snort

development community to keep its signature base perfectly updated.

3.1.1. Snort’s basic architecture

Snort provides a set of features that make it a very powerful security tool,

among which are the capture of network traffic, the analysis and registration

of captured packets and the detection of malicious or dishonest traffic. Before

seeing Snort’s outstanding features in more detail, it is important to know and

understand its architecture.

Snort consists of a set of components, most of which are developed as plu-

gins that allow the customisation of Snort. Among these components, the

preprocessors stand out, which allow Snort to manipulate the content of the

Recommended links

Version 3 of Snort is available
at https://github.com/snort3/
snort3.
The main differences be-
tween version 2 and ver-
sion 3 of Snort can be quick-
ly consulted on the fol-
lowing website: https://
blog.snort.org/2020/08/
snort-3-2-differences.html.

GNUFDL •

https://snort.org
https://github.com/snort3/snort3
https://github.com/snort3/snort3
https://blog.snort.org/2020/08/snort-3-2-differences.html
https://blog.snort.org/2020/08/snort-3-2-differences.html
https://blog.snort.org/2020/08/snort-3-2-differences.html

35 Intrusion detection systems

packets more efficiently before moving it to the detection element; its notifi-

cation system is also outstanding, which allow the reported information to be

sent and stored in different formats and following different methods.

Snort�plugins

The term plugin refers to the software modules of an application, devel-

oped independently of the general kernel of the application. The aim

is to add additional features without affecting the core source code or

other components. To do this, the application must provide an API (Ap-

plication Programming Interface), that allows the development and com-

pilation of such complements. Thus, a Snort plugin is a component de-

veloped according to the Snort plugin API, which will be used alongside

the core of the Snort code, but separated, so that a change in the com-

ponent code does not affect the kernel or other components.

Snort’s central architecture is based on the following four components:

• Packet detector

• Preprocessor

• Detection engine

• System of notifications

According to this structure, Snort will allow the capture and preprocessing of

network traffic through the first two components (packet detector and pre-

processor) and will then check them through the detection engine (according

to the set of activated rules) and will generate, through the last of the compo-

nents, the relevant notifications.

Figure 10 shows Snort’s basic architecture that we have just commented on.

Looking at the figure, we can draw an analogy between Snort and a mechanical

machine for automatic coin sorting:

1) It takes all the coins (network packets collected by the packet detector).

2) Each coin will be dropped down a ramp to determine which group of coins

it belongs to (packet preprocessor).

3) It sorts the coins according to each coin type and packs them into cannons

according to the category (detection engine).

4) Finally, the administrator will decide what to do with each one of the or-

dered coin cannons (notification system).

GNUFDL •

36 Intrusion detection systems

Figure 10. Snort’s basic architecture

Snort’s preprocessor, detection engine and notification system are also imple-

mented in the form of independent components. We will now examine in

more detail each of the basic components of Snort that we have just seen.

3.2. Packet sniffer and preprocessor

A sniffer is a device (software or hardware) that is used to capture packets

travelling through the network to which it is associated.

In the case of TCP/IP networks, this traffic is usually IP datagram traffic, al-

though it is also possible to have traffic of different types, such as UPnP traf-

fic or (Apple) Bonjour traffic. In addition, since IP traffic also consists of dif-

ferent types of protocols, such as TCP, UDP, ICMP, routing protocols, IPSec,

etc., many sniffers will need to know beforehand the type of traffic to be able

to later interpret the packets that are being collected, and display them in a

language that a network administrator can understand.

Like many other tools related to network security, sniffers can be used for

more or less dishonest purposes. Among the different uses that can be given

to a sniffer, we can think of traffic analysis for the solution of congestion and

network problems, improvement and study of the performance of resources,

passive capture of sensitive information (passwords, user names, etc.).

Thus, like the rest of traditional detectors, the Snort packet decoder will be

the element in charge of picking up the packets, which the other components

will examine and classify later. To do this, the packet sniffer must be able to

capture all the traffic that it can, to then pass it to the next component (the

preprocessor), which will be responsible for detecting what type of traffic has

been collected. Figure 11 shows a diagram of how the Snort packet sniffer

works.

GNUFDL •

37 Intrusion detection systems

Figure 11. How the Snort packet sniffer works

As the Snort packet sniffer collects the traffic passing through the network,

it will deliver it to the preprocessing element. This element will adapt the

captured packets and deliver them to the detection engine.

Network interface in
promiscuous mode

The promiscuous mode is the
way in which the network card
of a computer connected to
a network (whether a wired
network or a wireless network)
will allow the capture of all the
traffic that flows through this
network interface.

Thus, the preprocessor will get raw packets and will verify them through a set

of plugins. For example, it will use a plugin for the treatment of packets related

to RPC14 type traffic, or a plugin for the treatment of packets related to port

scans. These plugins will verify packets in search of certain behaviours that

allow Snort to determine their type. Once the type is determined, the packet

will be sent to the detection engine.

This preprocessing feature is really important for a detection tool, as it is pos-

sible to use third-party applications that can be activated and disabled accord-

ing to the needs of the preprocessing level. For example, if a network admin-

istrator is not concerned about the RPC traffic that enters and leaves their

network (and therefore does not need to analyse it), for whatever reason, it

will be sufficient to disable the RPC plugin and continue using the rest.

Figure 12 shows a diagram in which the Snort preprocessor uses two of its

plugins to verify the type of packets it receives and decide whether to move

them to the detection engine or not.

Figure 12. Snort preprocessor that combines two data processing
plugins

(14)Stands for Remote Process Calls.

GNUFDL •

38 Intrusion detection systems

Snort preprocessors offer great flexibility for the implementation of dif-

ferent traffic processing algorithms.

3.3. Rules and detection engine

As we have already mentioned, Snort bases its detection on the misuse model.

For this reason, Snort must be configured using a set of rules that will use the

detection module to perform the recognition of attacks and intrusion signa-

tures. Snort rules are usually grouped into signature sets that categorise inci-

dents. Thus, we will find sets of rules associated with the detection of Trojans,

the detection of intermediate buffer overflow attacks, and so on.

Each rule can be divided into two parts. First, we have the header of the rule,

in which we indicate the action associated with this rule in case it is fulfilled

(generation of a log file or generation of an alert); the type of packet (TCP, UDP,

ICMP, etc.); the address of origin and destination of the packet, etc. Second,

we have the option field of the rule, in which we will find the information

that must be contained in the packet (in the data part, for example) so that

the action associated with the rule is activated.

The action defined in a Snort rule can be chosen from five basic actions:

• Alert. Generation of an alert that also contains the log information corre-

sponding to the packet that activates the rule.

• Log. Generation of only the log information associated with the content

of the packet associated with the activation of the rule.

• Pass. Pass the packet associated with the rule without having to log or

alert about the event.

• Activate. Generation of an alert together with the activation of a dynamic

rule (see Dynamic action).

• Dynamic. Rule that remains inactive and is activated through the activate

action, for example, to trigger the generation of logs associated with the

packets associated with the initial rule to obtain additional information

regarding traffic subsequent to the packet that triggered the rule (and with

a given time duration).

GNUFDL •

39 Intrusion detection systems

Using Snort in IPS mode can provide additional actions, such as reac-

tive actions to block detected traffic. In this case, the use of additional

actions (of drop, sdrop and rejected types, as in firewall systems), allows

to directly reject the packets identified by Snort as suspicious.

In Snort’s detection engine we find the required treatment algorithms to com-

plete the detection process. Based on the information provided by the pre-

processor and its associated plugins, the detection engine will contrast this

data with the rules base defined by the operator. If any of the rules matches

the information obtained, the detection engine will be responsible for warn-

ing the notification system, indicating the rule that it has skipped. Figure 13

shows a simple outline of the overall behaviour of Snort’s detection engine.

Figure 13. Snort’s detection engine

Of all the elements we have seen, the detection engine and the syntax used by

the detection rules are the most complicated and difficult parts to understand

when studying Snort’s behaviour. However, once we start working with Snort

and have minimally learned the syntax used, it is quite easy to get to customise

and adjust the behaviour of Snort’s detection functionality. In addition, the

rule sets can be easily activated or deactivated, so that the desired detection

behaviour can be defined according to the type of network in which Snort

will be configured.

GNUFDL •

40 Intrusion detection systems

3.4. Notification system

Once the information captured by the Snort packet decoder is analysed by

the detection engine, the results must be reported in some way. Through this

component, this function can be performed and the results can be generated

in different formats and to different equipment.

When the detection engine launches an alert, the result may involve the gen-

eration of a log file, sending the alert over the network through an SNMP mes-

sage or even storing the information associated with the alert in a structured

way by some database management system. Many of these tools are available

and can be freely downloaded from the Internet.

As in the case of the detection engine and the preprocessor, Snort’s notification

system also uses a plugin system for the processing of information. Figure 14

shows a diagram for the operation of this notification system using plugins.

Figure 14. Snort notification system, through plugins

The purpose of installing Snort on a network is not only to obtain information

(intrusion attempts), but to analyse this information and to be able to take the

necessary actions based on the data obtained. If the number of active rules is

high and the network traffic increases easily, it will not be very easy to analyse

the information reported by Snort unless we use some other complementary

tools, such as correlations and visualisation tools.

Snort alerts

If we try to run Snort in a con-
gested network with a reason-
able number of detection sig-
natures activated, the amount
of alerts launched by Snort
can reach a hundred in a short
time. This huge volume of
information will not be easy
to deal with using a simple
browser of log files.

GNUFDL •

41 Intrusion detection systems

Furthermore, the interesting aspect of a detection system like Snort is not sim-

ply to log events, but to be able to react to intrusion attempts in a reasonably

short period of time. Therefore, it will be necessary to use second applications

that help consolidate and analyse the information reported by Snort in order

to alert network administrators of the intrusion attempts analysed.

Currently, there are a large number of utilities to work with the infor-

mation generated by Snort. Some of these tools are maintained by the

same community of Snort developers, although we can also find appli-

cations developed by third parties or commercial applications.

GNUFDL •

42 Intrusion detection systems

4. Deception systems and techniques

As we have just seen in the previous sections, the detection of intruders as-

sumes that an attacker is able to violate the security policies of a system. Thus,

tools are used to inform system administrators, prepare reports and remedi-

ation plans, with the ultimate goal of reacting to attacks by an intruder in

the appropriate manner. We have also seen that classic intrusion detection

tools have evolved towards complete incident detection and management

platforms, with the aim of facilitating the management of large volumes of

information created by detection tools, not only tools for intrusion detection,

but also events generated from other technologies, such as vulnerability scan-

ners, or decoy and deception systems.

Specifically, these decoy and deception systems can be seen as complementary

technologies. They can provide additional information to the management,

information fusion and alert correlation platforms that we have seen before.

Instead of addressing the problem of cyber defence from a preventive point of

view, these systems try to change the rules of the game, offering the defender

(e.g., the network administrator) the possibility of taking the initiative.

Decoy and deception systems, rather than neutralising the actions of

a possible intruder, try to use similar techniques, but with the aim of

learning from the intruder’s offensive actions.

We will now summarise two strategies that can be used when building such

deception systems and techniques.

First of all, we have a strategy known as the installation of honeypot systems.

It is about installing network equipment that tries to attract traffic from an

intruder, imitating as much as possible the real behaviour of the operating

systems of the network in question. Thus, the network administrator will be

able to see the attempts of a possible intruder before it enters the real comput-

ers. The aim can also be to see how the security elements implemented in real

equipment behave. In this case, emulators, co-simulators and digital twins are

usually used for creating the deception equipment.

Recommended reading

The following article (avail-
able online) provides more
information about possi-
ble improvements in imple-
mentations of the honey-
pot concept from the use
of digital twins: Eckhart
and�Ekelhart (2019). “Dig-
ital Twins for cyber-physi-
cal security: State of the art
and Outlook”, Security and
Quality in Cyber-Physical Sys-
tems Engineering, pp. 383-412,
Springer Nature. <http://
dx.doi.org/10.1007/978-3-030
-25312-7_14>

GNUFDL •

http://dx.doi.org/10.1007/978-3-030-25312-7_14
http://dx.doi.org/10.1007/978-3-030-25312-7_14
http://dx.doi.org/10.1007/978-3-030-25312-7_14

43 Intrusion detection systems

Decoy and deception equipment, also known as honeypots, is network

equipment that attempts to attract traffic from one or more attackers.

In this way, their administrators can see attack attempts to enter the

system and how the security elements implemented in the network be-

have.

Another aim is to obtain information about the tools and knowledge needed

to make an intrusion in network environments such as those we intend to

protect. All this information will end up serving to stop future attacks on the

rest of the production equipment.

The conceptual idea of a decoy and deception system has existed for several

decades. As a first approximation, we could define it as a network resource

designed so that different attackers can introduce themselves in a simple way.

These computers are usually designed to mimic the behaviour of production

computers in order to be of interest to a community of attackers.

They usually have prevention mechanisms so that an intrusion to the decoy

and deception computer does not end up causing an intrusion to the real com-

puters of the network. Naturally, if an intruder manages to attack the comput-

er, he does not have to realise that he is being monitored or deceived.

Thus, these computers should be installed behind configured firewall systems

to allow incoming connections to the decoy computer, but limiting output

connections.

In the second place, we have a strategy known as building an entire network

segment which consists solely of decoy and deception equipment, all prepared

to deceive the intruders (allowing access without too many difficulties). This

is what is known as building a honeynet.

The equipment in this segment will have to offer configured services to attract

the attention of a whole community of intruders with the aim of recording

all their movements through the decoy equipment.

The network can be real, with physical equipment and gateways, joined to

the production network protected with traditional elements of monitoring,

detection and prevention. The network can also be completely or partially

virtual, combining the interaction between the physical equipment and gate-

ways, with the use of emulation and virtualisation technologies. Here we find,

for example, the use of virtual machines with virtualisation products of the

Oracle/virtualbox, VMware/vSphere, Microsoft Hyper-V, etc. type, as well as

GNUFDL •

44 Intrusion detection systems

the use of Docker-type software containers or alternative solutions. Also, em-

ulation and virtualisation of network elements, with the use of software-de-

fined networking and other traditional elements of cloud computing.

Instead of routing at the network level (i.e., at level 3 of the OSI reference

model), the deception system could also function as a network bridge at the

link level (i.e., level 2 of the OSI reference model), so that it could do without

using IP addresses and reduce the chances of detection by the attackers.

All systems installed within a deception network should be systems of decoy

and deception and as realistic as possible. That is, they should be real systems

and applications, like those we can find in any production equipment.

Since we have not found simulated services in these systems of decoy and

deception, all conclusions drawn from an investigation can be extrapolated

directly to a real production network. Thus, all the deficiencies and weaknesses

that are discovered within a deception network will be the same as in most

organisations today.

The operation of the decoy and deception network is based on a single princi-

ple: all traffic that enters any of its equipment must be considered suspicious.

The monitoring process will be carried out through the detection mechanisms

installed on the gateway, detecting attacks based on already known trends or

statistics. However, the possibilities of investigating all the activity of a net-

work of decoy and deception should also help detect unknown attacks.

Decoy and deception systems should be seen as research tools to im-

prove the safety of production networks. They are a valuable solution,

but require high dedication (time and storage resources).

GNUFDL •

45 Intrusion detection systems

Summary

Computer networks are exposed to cyber attacks so often that a large number

of security requirements must be imposed for the protection of their resources.

Although the deficiencies of these systems can be checked by using conven-

tional tools, they are not always corrected. In general, these weaknesses can

cause a hole in network security and facilitate unauthorized or intrusive ac-

tivities into the system.

In the same way that to ensure the physical safety of a building, motion de-

tectors, surveillance cameras, log books, etc. are usually installed, a computer

network needs equivalent components in the digital world to collect and cre-

ate intrusion scenarios, process alerts and prevent intrusive activities.

In this didactic module, we have presented intrusion detection systems (IDS),

the aim of which is precisely to provide these complementary elements to tra-

ditional security mechanisms and to be able to offer additional capabilities to

warn and guide network administrators when there are attacks and computer

intrusions.

We have also seen additional functionalities to facilitate normalisation, con-

solidation and correspondence of events collected by heterogeneous detection

sensors. Some of these features have been presented in detail and we have

made a first approach to Snort, an intruder detection system, based on open

source and offered to the community of network administrators as a free soft-

ware tool. Snort’s main goal is to help network administrators continuously

monitor network traffic in search of intrusion attempts or misuse. Finally, we

have completed the module with a quick presentation on deception systems

and techniques, as a complementary technology to learn from the offensive

actions of the intruder.

GNUFDL •

47 Intrusion detection systems

Glossary

attack  Aggression to the security of a system resulting from an intentional and deliberate
act that violates its security policy.

bug Programming defect that can trigger a security deficiency.

CERT  See Computer�emergency�response�team.

common vulnerabilities and exposures Public standard for the identification of vul-
nerabilities. It associates a unique identifier to each different vulnerability.
acronym CVE

common vulnerability scoring system Common framework for the evaluation of the
criticality of vulnerabilities.
acronym CVSS

computer emergency response team Team of responses to computer emergencies; one
of its main tasks is vulnerability management.
acronym CERT

computer security incident response team Computer security incident response team;
one of its main tasks is vulnerability management.
acronym CSIRT

CSIRT  See Computer�security�incident�response�team.

CVE  See Common�vulnerabilities�and�exposures.

CVSS  See Common�vulnerability�scoring�system.

DDoS  See distributed�denial�of�service.

denial of service Attack that attempts to saturate the victim’s resources, such as the mem-
ory or computing and processing capacity.
acronym DoS

distributed denial of service Denial of service that takes place from various connection
points.
acronym DDoS

DoS  See denial�of�service.

exploit  Program or script that allows one or more vulnerabilities to be exploited; that is, a
program that allows an attack to be made by taking advantage of the vulnerability.

exploration of ports  Technique used to identify the services offered by a particular system
or piece of equipment.

malware Program with malicious purposes.

risk  A loss expectation expressed as the probability that a specific threat will exploit a
particular vulnerability with especially harmful results.

rootkit Program that allows privileged access to a computer and manages to hide its pres-
ence from the administrator. It usually uses several vulnerabilities to install itself and achieve
its purpose.

security policy  Set of rules and practices that define and regulate the security services of
an organisation or system with the purpose of protecting its critical and sensitive resources.
In other words, it is the declaration of what is allowed and what is not.

security vulnerability  A failure or weakness in the design, implementation, operation
or management of a system, which can be exploited to violate its security policy.

sniffer Application that intercepts all the information that passes through the network in-
terface to which it is associated.

threat  Potential breach of security that exists on the basis of circumstances, capabilities,
actions or events that may cause a security breach or some damage to the system.

GNUFDL •

48 Intrusion detection systems

Trojan horse A program, apparently harmless, that contains an attack on an uncorrected
vulnerability.
syn . trojan

vulnerability scanner  An application that allows checking whether a system is vulnera-
ble to a set of security deficiencies.

zero-day vulnerability Vulnerability that, at the time of being exploited, is not previously
known.

GNUFDL •

49 Intrusion detection systems

Bibliography

Beale, J.; Foster, J. C.; Posluns J.; Caswell, B. (2003). Snort 2.0 Intrusion Detection. Oxford:
Syngress Publishing.

Garcia-Alfaro, J. (2004). “Mecanismos para la detección de ataques e intrusiones”. In: Her-
rera, J.; Garcia-Alfaro, J.; Perramon, X. Security in computer networks. Barcelona: Fundació Uni-
versitat Oberta de Catalunya.

Garcia-Alfaro, J. (2007). “Detección de ataques en red con Snort”. In: Herrera, J.; Garcia-Al-
faro, J.; Perramon, X. Advanced Security Aspects in Networks. Barcelona: Fundació Universitat
Oberta de Catalunya.

Koziol, J. (2003). Intrusion Detection with Snort. Indianapolis: Sams Publishing.

Kruegel, C.; Valeur, F.; Vigna, G. (2004). Intrusion Detection and Correlation: Challenges
and Solutions. Springer-Verlag.

Northcutt, S.; Novak, J. (2002). The Network Intrusion Detection (3rd ed.). New Riders.

Miller, D. R; Harris, S.; Harper, A. A.; Vandyke, S.; Blask C. (2011). Security Information
and Event Management (SIEM). Mc Graw Hill.

Proctor, P. E. (2001). The practical intrusion detection handbook. New Jersey: Prentice-Hall.

Rehman, R. (2003). Intrusion Detection Systems with Snort. Advanced IDS Techniques Using
Snort, Apache, MySQL, PHP, and ACID. New Jersey: Prentice Hall PTR.

GNUFDL •

	Intrusion Detection Systems (Sample Chapter)
	Contents
	Introduction
	Objectives
	1. Cyber defence and tools for intrusion detection
	1.1. Background and current systems
	1.1.1. Early solutions
	1.1.2. Current intrusion detection systems

	1.2. General architecture of a detection system
	1.2.1. Event collectors
	1.2.2. Event processors
	1.2.3. Response units and remediation plans

	2. Management of events, alerts and incidents
	2.1. Configuration of event collectors
	2.2. Information and collection policies
	2.3. Normalisation of the collected information
	2.4. Aggregation and fusion of information
	2.5. Correlation of alerts and generation of reports

	3. Detecting network intruders with Snort
	3.1. Origin and architecture of Snort
	3.1.1. Snort’s basic architecture

	3.2. Packet sniffer and preprocessor
	3.3. Rules and detection engine
	3.4. Notification system

	4. Deception systems and techniques
	Summary
	Glossary
	Bibliography

